Reg.No:

SNS College of Technology, Coimbatore-35. (Autonomous)
B.E/B.Tech- Internal Assessment -II

Academic Year 2023-2024(ODD)
Third Semester
Computer Science and Engineering

19ITT202 Computer Organization and Architecture [Common to CSE \& IT]

Time: 1.5 Hours

Maximum Marks: 50

Answer All Questions

PART - A (5x 2 = 10 Marks)
CO Blooms
List out the advantages of Booth Algorithm
CO2 Und
1) It handles both positive and negative multiplier uniformly.
2) It achieves efficiency in the number of additions required when the multiplier has afew large blocks of 1's.
3) The speed gained by skipping 1 's depends on the data.

1.
2. Define floating point number representation and Recall value CO2 Rem representation equation for single precision

The description of binary numbers in the exponential form is called floating-pointrepresentation.
A Single-Precision floating-point number occupies 32-bits, so there is a compromise betweenthe size of the mantissa and the size of the exponent.

S: sign bit
0 -non - negative
1 - negative

Value Represented $= \pm 1 . \mathrm{M} \mathrm{x}^{2}{ }^{\mathrm{E}}$ - 127 execution of the above mentioned complete instruction

- Add (R3), R1
- Fetch the instruction
- Fetch the first operand (the contents of the memory location pointed to by R3)
- Perform the addition
- Load the result into R1

Step	Action
1	$\mathrm{PC}_{\text {out }}, \mathrm{MAR}_{\text {in }}$, Read, Select4Add, $Z_{\text {in }}$
2	$\mathrm{Z}_{\text {out }}, \mathrm{PC}_{\text {in }}, Y_{\text {in }}$, WMF C
3	$\mathrm{MDR}_{\text {out }}, \mathrm{IR}_{\text {in }}$
4	$\mathrm{R}_{\text {out }}, \mathrm{MAR}_{\text {in }}$, Read
5	$\mathrm{R}_{10 \mathrm{out}}, Y_{\text {in }}$, WMF C
6	$\mathrm{MDR}_{\text {out }}$, SelectY, Add, $\mathrm{Z}_{\text {in }}$
7	$\mathrm{Z}_{\text {out }}, \mathrm{R} 1_{\text {in }}$, End

4. What are the 4 different phases of Pipelining

CO3 Rem
A pipelined processor uses a 4 -stage instruction pipeline with the following stages:

- Instruction fetch (IF)
- Instruction decode (ID)
- Execute (EX) and
- Writeback (WB)

5. Classify the different types of pipeline hazards
6. Data hazard
7. Structural Hazard
8. Control Hazard.

PART - B (13+13+14 = $\mathbf{4 0}$ Marks)

6. (a) Multiply the following pair of signed 2's complement $13 \quad \mathrm{CO} 2$ App numbers using the Booth algorithm. Assume that A is the multiplicand \& B is the multiplier. $\mathrm{A}=01101 \& \mathrm{~B}=11010$. Compare it with normal multiplication and explain the concept of Booth recoding of multiplier

Multiplier	Version of multiplicand selected by bit	
Bit i		0 XM
0	0	+1 XM
0	1	-1 XM
1	0	0 XM
1	1	

(or)
(b) Elaborate the concept of Integer division. Describe and analyze the difference between restoring and non-restoring division algorithm \& apply any one algorithm execution for Dividend value 1000 and Divisor value 11.

Restoring Division

- Shift A and Q left one binary position
- Subtract M from A, and place the answer back in A
- If the sign of A is 1 , set q_{0} to 0 and add M back to A (restore A); otherwise, set q_{0} to 1
- Repeat these steps n times
$1 1 \longdiv { 1 0 0 }$ $\frac{11}{10}$

$\begin{array}{lllllll}\text { Initially } & 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 1 & 1\end{array}$	1000	
Shift 000001	$000 \square$	
Subtract 1-1 1-1001		First cycle
Setq8 (1) 11110		
Restore$1 / 1$ 0001	-	
Shift 00000	$00 \square \square$	
Subtract 111101		
Set q Restore \qquad		Second cycle
00010	00000	
Shift 00100	0 ロ0]	
Subtract $11 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$		
Set \% Q0001		Third cycle
Shift 000010	0 001	
Subtract111111001	[0] 1	
Set m_{0} (1) 11111		Fourth
	(0) ${ }^{\text {a }}$	urth cycle

Non - Restoring Division

- Avoid the need for restoring A after an unsuccessful subtraction.
- Any idea?
- Step 1: (Repeat n times)
$>$ If the sign of A is 0 , shift A and Q left one bit position and subtract M from A; otherwise, shift A and Q left and add M to A.
\Rightarrow Now, if the sign of A is 0 , set q_{0} to 1 ; otherwise, set q_{0} to 0 .
- Step2: If the sign of A is 1 , add M to A

7. (a) Illustrate the architectural organization of a processor and 13 CO3 Und elaborate the steps needed for execution of a complete instruction.

Execution of processor Instruction

- Fetch the contents of the memory location pointed to by the

PC. The contents of thislocation are loaded into the IR (fetch phase).

$$
\mathrm{IR} \leftarrow[[\mathrm{PC}]]
$$

- Assuming that the memory is byte addressable, increment the contents of the PC by 4 (fetch phase).

$$
\mathrm{PC} \leftarrow[\mathrm{PC}]+4
$$

- Carry out the actions specified by the instruction in the IR (execution phase).
- Transfer a word of data from one processor register to another or to the ALU
- Perform an arithmetic or a logic operation and store the resalt in a processor register
- Fecch the contents of a given memory location and load them into a processor register
- Store a word of data from a processor register into a given memory location

Add(R3),R1

```
Step Action
1 PC rot, MAR (in, Resd, Select4, Add, Zin
2 Z Zout PCC int Y Yis, WMFC
3 MDR cat, 汭m
4 R3 sut, MAR (m, Read
5 R1 sut, Y Yn, WMFC
6 MDR eat; SelectY, Add, Z Z in
7 Z (cot, R1 (in, End
```

(or)
(b) Summarize the processor execution of Hard-wired Control 13 CO3 App and Microprogrammed control instruction execution. Consider executing the instruction Add (R3),R1 by the processor. analyse the actions and control instructions needed for execution.

Figure 7.14 Block diogram of a complete processor.

Step Action

1	$\mathrm{PC}_{\text {roat }}, \mathrm{MAR}_{\text {ers, }}$ Read, Select4, Add, $\mathrm{Z}_{\text {in }}$
2	$\mathrm{Z}_{\text {sut, }}, \mathrm{PC}_{\text {int }}, \mathrm{Y}_{\text {isis }}$, WMFC
3	$\mathrm{MDR}_{\text {cat }}, \mathrm{IR}_{\text {tr }}$
4	R3 ${ }_{\text {sut }}, \mathrm{MAR}_{\text {in }}$, Read
5	$\mathrm{R} 1_{\text {sut, }}, \mathrm{Y}_{\text {in }}, \mathrm{WMFC}$
6	$\mathrm{MDR}_{\text {cat }}$, Select Y, Add, $\mathrm{Z}_{\text {tn }}$
7	$\mathrm{Z}_{\text {cot }}, \mathrm{R1}_{\text {en }}$, End

Micro. irstruction	**	$\underbrace{4}$	\%	皆	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{2} \end{aligned}$		$\frac{\alpha^{j}}{0}$	$\underbrace{\underline{5}}$	2	$\frac{\ddot{4}}{8}$	$\frac{g}{8}$	N	N	$\frac{3}{4}$	$\frac{5}{2}$	${ }^{2}$	3			*
1		0	1	1	1		0	0	0	1	1	1	0	0	0	0	0			
2		1	0	0	0		0	0	1	0	0	0	1	0	0	0	1			
3		0	0	0	0		1	1	0	0	0	0	0	0	0	0	0			
4		0	0	1	1		0	0	0	0	0	0	0	0	0	1	0			
5		0	0	0	0		0	0	1	0	0	0	0	1	0	0	1			
6		0	0	0	0		1	0	0	0	1	1	0	0	0	0	0			
7		0	0	0	0		0	0	0	0	0	0	1	0	1	0	0			

Figure 7.15 An exomple of microisatructions for Figuse 7.6.
8. (a) Illustrate the advantages of fast multiplication over other $14 \quad \mathrm{CO} 2$ App multiplication algorithms and apply the two types of fast multiplication concept for the following values. Assume that A is the multiplicand \& B is the multiplier. $\mathrm{A}=01101$ \& $\mathrm{B}=11010$.

(or)
(b) Analyze the execution of processor instructions in pipelining $14 \quad$ CO3 Ana and how the performance got affected on the occurrence of Data and Instruction Hazards in pipelining, along with methods of handling its delay

(a) Sequentisy exacution

(b) Hardware organization

Figure 8.1 Basic idea of instuction pipelining.

Figure 8.6 Pipeline stolled by deta dependency botween D_{2} and W_{1}.

(b) Position of the source and result registers in the processor pipeline

Figure 8.7 Operand forwording in a pipelined procossos.

Figure 8.10 Use of an instruction queve in the hardwore argarizotion of Figure 8.2 b .

