1

(An Autonomous Institution) Coimbatore – 641 035. B.E / B.Tech – Internal Assessment Exam- I Academic Year 2023-2024 (ODD)

Third Semester (Regulation R2019)

19ITT202 – Computer Organization and Architecture (Common to CSE and IT)

TIME: 1.5 HOURS

ANSWER ALL QUESTIONS

<u>PART A — (5 x 2 = 10 Marks)</u>						
1.	Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much?	CO1	Ana			
2.	What is meant by straight line sequencing?	CO1	Und			
3.	What is meant by Bus Structure in Computer Architecture?	CO1	Und			
4.	Consider two 8 bit positive number +98 and +87 and perform	CO2	Ana			
5.	Sketch the binary addition and subtraction logic Network	CO2	Und			

PART B — (2 x 13 = 26 Marks and 1 x 14 = 14 Marks)

6.	(a)	(i) Formulate the CPU Performance equation and compose	CO1	Ana	7		
		the various factors that affect performance					
		(ii) Explain in detail about different instruction types and	CO1	Und	6		
		instruction sequencing with your own example.					
(OR)							
	(b)	Define Addressing mode and explain the basic addressing	CO1	Und	13		
		modes with an example for each.					
7.	(a)	Explain in detail about addition and subtraction of signed	CO2	Und	13		
		number with diagram and example.					
(OR)							
	(b)	Illustrate the concept of Carry Look ahead Adder with	CO2	Und	13		
		diagram.					

MAXIMUM MARKS: 50

8.	(a)	Assume that the variables f, g, h, i, and j are assigned to	CO1	Ana	14			
		registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume						
		that the base address of the arrays A and B are in registers						
		\$s6 and \$s7, respectively.						
		C Code: $f = g + A[B[4] - B[3]];$						
		For the C statement above, what is the corresponding MIPS						
		assembly code?						
(OR)								
8.	(b)	Show how to implement full adder by using two half adders	CO1	Ana	14			
		and external logic gates.						