

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Re-accredited by NAAC with 'A+' Grade Approved by AICTE, New Delhi, Recognized by UGC & Affiliated by Anna University, Chennai Coimbatore-641035

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

19EET301 / POWER ELECTRONICS AND DRIVES III YEAR / V SEMESTER UNIT – V : AC MOTOR DRIVES

BASICS OF AC DRIVE

TOPIC OUTLINE

What we'll discuss?

AC drive – Advantages AC drive – Limitations AC – Induction motor: Parts / Types Principle of Operation of Induction Motor Speed Torque characteristics Speed Torque relations Methods of Speed control

AC DRIVE Advantages / Limitations

Electric drives that use AC motors as the prime mover

Advantage:

- Motor is cheap
- Less maintenance
- Consume less power
- Used in any locations
- No upper limit for speed
- High dynamic response

Limitations:

- Control circuit complex in design
- Converters produce harmonics problems
- High starting torque is difficult to achieve

AC INDUCTION MOTOR-Parts / Types

- Single phase IM, Three phase IM
- Squirrel cage, Slip ring motors

PRINCIPLE OF OPERATION

- 3-phase supply to stator
- RMF produces, Ns
- Rotor cuts the flux, an EMF induces
- Relative speed of Ns and Nr
- Rotor rotates

SPEED – TORQUE CHARACTERISTICS

SPEED TORQUE RELATION

Speed:

N = 120 f / P

- Frequency control
- Pole changing method

Torque:

 $\mathbf{T} = V^2 \mathbf{R} / Z^2$

- Supply voltage control
- Rotor resistance control

Relations:

- $T = 3 P / \omega$
- $\omega = 2 \pi f$

$$V = 2 \pi f T \phi K_w$$

- where,
- f frequency in Hz
- ω speed in rad /sec
- N speed in RPM
- T torque in Nm
- V supply voltage in V
- R rotor resistance in Ω
- P mechanical power in W
- K constant

SPEED CONTROL METHODS

Stator side control:

- Stator voltage control
- Frequency control
- Stator voltage / frequency control (VFD)

Rotor side control:

- Rotor resistance (voltage) control
- Slip power recovery schemes

Evaluation Time

Summarize the content...

Thanking You.