

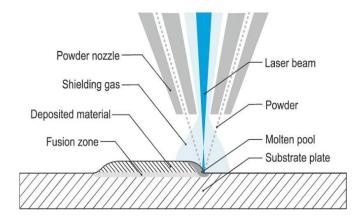
Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ401- 3D PRINTING FOR SPACE COMPONENTS

UNIT - V PRINTING PROCESSES AND BEAM DEPOSITION PROCESS


TOPIC: BEAM DEPOSITION PROCESS IN 3D PRINTING TECHNOLOGY

BEAM DEPOSITION

- Beam deposition (BO) Process enable the creation of parts by melting and deposition of material from powder or wire feedstock.
- Although this basic approach can work for polymers, ceramics and metal matrix composites, it is predominantly uses for metal powders.
- Thus, this technology is often referred to as 'metal deposition' technology.

- Beam deposition(BO) processes use some form of energy focused into a narrow region (a beam), which is used to heat a material that is being deposited.
- BO processes are NOT used to melt a material that is pre-laid in a powder bed but are used to melt materials as they are being deposited.
- BO process use a focused heat sources(such as a laser ,electron beam ,or plasma arc) to melt the feedstock material and build up 3-dimentional object in a manner similar to the extrusion-based process.
- Each pass of the BO head creates a track of solidified material, and adjacent lines of material make up layers.

1. Physical Vapor Deposition (PVD):

- Evaporation: In this process, a material is heated to a high temperature, causing it to vaporize. The vaporized material then condenses on the substrate, forming a thin film.
- Sputtering: This involves bombarding a target material with high-energy ions, causing the release of atoms or molecules from the target. These particles then deposit onto the substrate.

2. Chemical Vapor Deposition (CVD):

*CVD involves the reaction of gaseous precursors to produce a solid material on a substrate. The reaction can be initiated by heat, plasma, or other energy sources. This technique is often used to deposit thin films of materials like silicon dioxide or metal nitrides.

3. Ion Beam Deposition (IBD):

Ion beam deposition uses accelerated ions to sputter material from a target, and the sputtered material then deposits onto a substrate. This technique allows for precise control over the film thickness and composition.

4. Molecular Beam Epitaxy (MBE):

MBE is a specialized form of beam deposition used in the growth of crystalline thin films. It involves the deposition of individual atoms or molecules in a high vacuum environment. This precise control over the deposition process allows for the creation of high-quality crystalline structures.

ADVANTAGES

• Precision :

Then focused beam allow for precise control over film thickness and composition .

- Low Thermal Impact : Compared to traditional deposition method , beam deposition minimizes thermal stress on the substrate ,making it suitable for temperature-sensitive materials.
- Adhesion and Density : Ion beam deposition, in particular, often result in films with improved adhesion and density.

for

- Industry : Beam deposition is crucial Semiconductor manufacturing semiconductor, thin film transistor, and integrated circuit.
- **Optics :** It is used to create coating for lenses and mirrors.
- **Research and Development :** Beam deposition is widely employed in research labs for exploring new materials and studying their properties.

THANK YOU