

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ401-3D Printing for Space Components

UNIT-IV PRINTING PROCESSES AND BEAM DEPOSITION PROCESS

TOPIC: Bio Plotter Concept in Additive Manufacturing

Introduction

- Bioprinters are automated robotic devices that work on the basis of different mechanisms.
- 3D printers that can only print cell-free scaffolds but cannot dispense living cells are not considered bioprinters.
- The first commercial 3D bioprinter was prepared in Germany at Freiburg University by Prof. Ralf Mulhaupt's group.
- The evolution of 3D bioprinters is a continuous process that involved the hybridization of new technological approaches to creating new advanced forms of bioprinters.

Types of Bioprinters

There are different types of bioprinters depending on the technique of bioprinting employed by the machines;

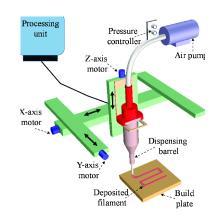
- Inkjet bioprinters
- Extrusion-based bioprinters and
- Laser-based bioprinters.

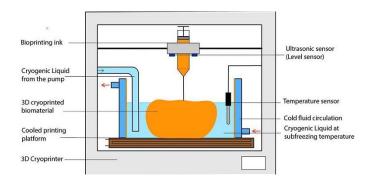
These bioprinters work on different mechanisms and are generally used for different purposes depending on the type of biomaterials used.

Components of Bioprinter

Bioprinter components:

- The size of the printers is dictated by the functional specifications depending on the desirable bioprinted tissue or organ construct.
- The number of nozzles or openings also depends on the functional specification of the device.
- Other specific components, like laser sources and temperature controls, are different in different types of bioprinters.




Parts of Bioprinter

Different parts of bioprinters:

- Different types of bioprinters have different components.
- Head mount
- Elevator
- Platform
- Reservoirs
- Nozzle

Parts of Bioprinter

Head mount

• The head of the printer is attached to a metal plate that runs along the horizontal axis. The motor on the x-axis moves the metal plate side to side to deposit the biomaterial in a horizontal direction.

Elevator

• The elevator is the metal track running vertically at the back of the machine. It is driven by the z-axis motor that moves the head of the printer in an up and down direction.

Parts of Bioprinter

Platform

• The platform is a shelf present at the bottom of the machine that provides a space for the organ to rest during the fabrication process.

Reservoirs

• The reservoir is present on the print head that holds the biomaterial that is to be deposited during the printing process.

Nozzle

• The biomaterial in the reservoir present in the print head is forced out through a small nozzle or syringe which is present just above the platform.

Advantages and Disadvantages

Advantages

- Highest resolution for an extrusion system
- Use of multiple materials in a single print
- Ideal for research environments and medical (bone) applications

Disadvantages

- Limited part geometry
- High cost of system
- Small build volume

Conclusion

- Bioprinting in additive manufacturing has diverse applications, ranging from creating functional tissues for medical purposes to developing organ models for drug testing.
- It's utilized in regenerative medicine, tissue engineering, and pharmaceutical research, enabling the production of customized implants, tissues, and even organs.
- This technology holds promise for advancing medical treatments and reducing the need for organ transplants by providing tailored, biocompatible solutions.

THANK YOU