

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-35

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ401-3D Printing for Space Components

UNIT-V PRINTING PROCESSES AND BEAM DEPOSTION PROCESSES

TOPIC: Droplet Formation in 3D printing

Mr.N.Venkatesh

AP/Aerospace

Introduction

Definition of Droplet Formation in 3D Printing:

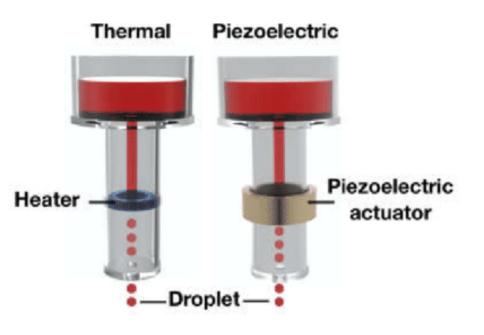
- Droplet formation refers to the controlled deposition of small droplets of material onto a substrate or previously deposited layers to build a three-dimensional object.
- It involves precise ejection or extrusion of material in a controlled manner to create layers, contributing to the additive manufacturing process.

Significance of Droplet-Based Techniques:

- **Precision and Accuracy:** Droplet-based techniques allow for precise placement of materials, contributing to high-resolution printing and intricate designs.
- Material Versatility: These methods accommodate various materials, including polymers, metals, ceramics, and biological materials, expanding the scope of applications.
- Layer-by-Layer Construction: The layering process enables complex geometries and intricate internal structures that traditional manufacturing methods might struggle to achieve.

Inkjet-based Printing:

- Description: Inkjet-based 3D printing utilizes printheads that eject tiny droplets of liquid material onto the build surface.
- Mechanism: The printhead, using thermal or piezoelectric methods, expels droplets onto the substrate, where they solidify or cure.


Pros:

- □ High resolution and precision.
- □ Compatibility with a wide range of materials.
- □ Suitable for small-scale intricate designs.

Cons:

- □ Limited material viscosity.
- □ Slower compared to other printing methods for large-scale production.

Extrusion-based Printing:

- Overview: Extrusion-based printing involves the controlled extrusion of materials, like filaments or pastes, through a nozzle.
- Process: Material is pushed through a nozzle heated to a controlled temperature, layering to form the object based on the digital model.

Pros:

- Compatibility with a broader range of materials, including thermoplastics, ceramics, and food materials.
- □ Faster printing speeds for larger objects.
- □ Cost-effective for bulk production.

Cons:

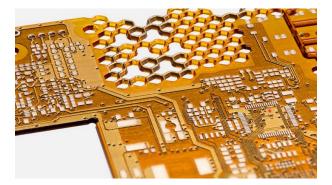
- □ Limited resolution compared to inkjet-based methods.
- □ Challenges with intricate designs due to layering.

Comparison of Droplet Formation Techniques

Aspect	Inkjet-based Printing	Extrusion-based Printing
Mechanism	Ejects liquid droplets	Extrudes material through a nozzle
Material Range	Limited by viscosity	Wide range of materials
Resolution	High	Moderate
Speed	Slower for large-scale	Faster for bulk production
Complexity of Designs	Suitable for intricate designs	Challenges with intricate details
Applications	Prototyping, small-scale production	Large-scale production, functional parts

Factors Influencing Droplet Formation:

- ✓ Viscosity: Material viscosity affects droplet size and flow rate, influencing the printing quality and resolution.
- ✓ Surface Tension: Determines the droplet's ability to maintain a cohesive shape upon deposition.
- ✓ Nozzle Design: The nozzle's size, shape, and internal structure play a crucial role in droplet formation and deposition accuracy.
- Temperature and Pressure: Control of temperature and pressure influences material flow and droplet consistency



Applications of Droplet Formation in 3D Printing

- Aerospace and Automotive:
 - \checkmark Production of lightweight parts with complex geometries.
 - \checkmark Rapid prototyping for testing and development.
- ➢ Healthcare Industry:
 - ✓ Manufacturing personalized medical devices.
 - \checkmark Fabrication of tissue scaffolds.
- Consumer Goods and Electronics:
 - ✓ Customized manufacturing of products.
 - ✓ Integration of electronics during printing.

