

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Envelopes

Envelope:

The envelope of the family of curves is a curve which touches each membrane of a family.

Procedure to find the envelope of the family of worves:

method 1:

If the family of curve is expressed as the quadratic form Say $Aa^2 + Ba + C = 0$ where 'a' is the parameter. Then the envelope is given by $B^2 - 4Ac = 0$

method &:

* Differentiate given eqn. with lespect to parameter.

* Elemporate the parameter from the given curive.

Froblems based on envelope with one parameter find the envelope of y = mx +ame, m is parameter soln.

The Stren eqn. By=mx+am² (m's parameter)

it, am²+xm-y=0, which is a quadratic eqn. in

m.

The envelope is siven by,

9-ma-aam-am

y = mx + a-m+ +2

 $B^{9}-4AC=0$ Here $A=a, B=\infty$, C=-Y

: x2-4a(-4)=0

 $x^2 + \mu \alpha y = 0$

2). From the envelope of $9 = mx + \sqrt{a^2m^2 + b^2}$

Given. $y = mx + \sqrt{a^2m^2 + b^2} \Rightarrow y - mx = \sqrt{a^2m^2 + b^2}$ Squarting on both Sides,

 $(y-mx)^2 = a^2m^2 + b^2$

cs Scanned with CamScanner

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Envelope

$$\Rightarrow y^2 - 2mxy + m^2 x^2 - \alpha^2 m^2 - b^2 = 0$$

$$(x^2 - \alpha^2) m^2 - 2b(y)m + (y^2 - b^2) = 0 \text{ which is a quenchation eqn. In } m.$$
The envelope g_{s} g_{vn} by $g_{vn}^2 - 4nc = 0$
Here $g_{s} = [x^2 - \alpha^2]$, $g_{vn}^2 - b^2 = 0$

$$\vdots H \qquad x^2 y^2 = (x^2 - \alpha^2)(y^2 - b^2) = 0$$

$$\vdots H \qquad x^2 y^2 = (x^2 - \alpha^2)(y^2 - b^2)$$
3) Phot the envelope of $g_{vn}^2 + \frac{y^2}{1-\alpha} = 1$, where α is the function.

Given $g_{vn}^2 + g_{vn}^2 = x(1-\alpha)$

$$\vdots (1-\alpha)x^2 + \alpha y^2 + x(1-\alpha)$$

$$\vdots (1-\alpha)x^2 + \alpha y^2 - x(1-\alpha)$$

$$\vdots (1-\alpha)x^2 + \alpha y^2 - x + \alpha^2 = 0$$

$$\Rightarrow \alpha^2 + (-x^2 + y^2 - 1)\alpha + x^2 = 0$$

$$\Rightarrow \alpha^2 + (-x^2 + y^2 - 1)\alpha + x^2 = 0$$
Here $g_{vn}^2 + g_{vn}^2 + g_{vn}^2 + g_{vn}^2 + g_{vn}^2 + g_{vn}^2 = 0$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$
Al. And the envelope $g_{vn}^2 + x^2 + x^2 = 0$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2) = 0$$

$$x^4 + y^4 + (-x^2 + y^2 - 1)(x^2)$$

cs Scanned with CamScanner

 $[x \cos^2 \theta + y \sin^2 \theta + 2xy \sin \theta + y \cos \theta]^2 = a^2 + 0$ $x^2 \cos^2 \theta + y^2 \sin^2 \theta + 2xy \sin \theta \cos \theta + x^2 \sin^2 \theta + y^2 \cos^2 \theta$

 $-2 \times y \leq r n \theta \cos \theta = \alpha^{2}$ $2^{2} \left[\leq r n^{2} \theta + \cos^{2} \theta \right] + y^{2} \left[\leq r n^{2} \theta + \cos^{2} \theta \right] = \alpha^{2}$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Envelope

