

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes

6. First the equ. of evolute of the ask-old
$$x^{3/3} + y^{3/3} = a^{3/3}$$

Solh.

Patametric term

 $x = a\cos^3 \theta$
 $\frac{dx}{d\theta} = 3a\cos^3 \theta \left(-sin\theta\right)$
 $\frac{dy}{d\theta} = 3a\sin^3 \theta$
 $\frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{3asin^3 \theta}{-3a\cos^3 \theta sin\theta}$
 $= \frac{-sin\theta}{\cos \theta}$
 $y = -tan\theta$

$$\frac{d^3y}{dx^3} = \frac{d}{d\theta} \left[\frac{dy}{dx}\right] \frac{d\theta}{dx}$$
 $= \frac{d}{d\theta} \left[-tan\theta\right] - \frac{1}{3a\cos^3 \theta sin\theta}$
 $= \frac{-sec^3 \theta}{-3a\cos^3 \theta sin\theta}$
 $y = \frac{sec^4 \theta}{3asin\theta} = \frac{1}{9a} \csc\theta sec^4 \theta$
 $x = x - \frac{y_1(1+y_1^2)}{2acs}$
 $= a\cos^3 \theta + 2a\frac{sin\theta}{\cos \theta} sin\theta \cos^3 \theta \cos^3 \theta$
 $= a\cos^3 \theta + 3a \sin^3 \theta \cos^3 \theta \cos^3 \theta$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes

$$\begin{array}{lll}
\overline{X} & = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (1) \\
\overline{Y} & = y + \frac{1 + y_{1}^{2}}{y_{2}} \\
& = a \sin^{3}\theta + \frac{1 + \tan^{3}\theta}{\frac{1}{2a} \csc\theta \sec^{2}\theta} \\
& = a \sin^{3}\theta + 3a \frac{\sec^{2}\theta}{\frac{1}{2a} \csc\theta \sec^{2}\theta} \\
\overline{Y} & = a \sin^{3}\theta + 3a \frac{1 + \cos^{3}\theta}{\frac{1}{2a} \csc\theta \sec^{2}\theta} \\
\overline{Y} & = a \sin^{3}\theta + 3a \sin\theta \cos^{3}\theta & \rightarrow (2)
\end{array}$$

$$\begin{array}{lll}
(1) + (2) \\
& \Rightarrow x + \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (2)
\end{array}$$

$$\begin{array}{lll}
(1) + (2) \\
& \Rightarrow x + \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (2)
\end{array}$$

$$\begin{array}{lll}
(1) + (2) \\
& \Rightarrow x + \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (2)
\end{array}$$

$$\begin{array}{lll}
(1) + (2) \\
& \Rightarrow x + \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

$$\begin{array}{lll}
(1) - (2) \\
& \Rightarrow x - \overline{y} = a \cos^{3}\theta + 3a \sin^{2}\theta \cos^{2}\theta & \rightarrow (3)
\end{array}$$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes

Un91-3 continuation. FRAN the evolute of 22 - 19 =1 Take $x = a \sec \theta$ $y = b \tan \theta$ $\frac{dx}{d\theta} = a \sec \theta \tan \theta$ $\frac{dy}{d\theta} = b \sec^2 \theta$ $\frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx}$ $= b \cdot 5e^{20} \times \frac{dy}{dx} = \frac{b}{a} \cdot \frac{3ee}{4an} \cdot e$ $\frac{d^2y}{dx^2} = \frac{d}{d\theta} \left[\frac{dy}{dx} \right] \frac{d\theta}{dx}$ $= \frac{d}{d\theta} \left[\frac{b}{a} \frac{\sec \theta}{\tan \theta} \right] \frac{1}{a \sec \theta + \tan \theta}$ $= \frac{b}{a} \left[\frac{\tan \theta \sec \theta \tan \theta - \sec \theta \sec^2 \theta}{\arcsin \theta} \right] \frac{1}{a \sec \theta \tan \theta}$ $= \frac{b}{a} \left[\frac{\tan^9 \theta}{\sin^9 \theta} \sec \theta - \sec^3 \theta}{\cos^9 \theta} \right] \frac{1}{\cos^9 \theta}$ $= \frac{b}{a} \left[\frac{\tan^2 \theta - 5ec^2 \theta}{\tan^2 \theta} \right] \sec \theta \frac{1}{a \sec \theta + an \theta}$ $=\frac{b}{a}\frac{-1}{\tan^2\theta}\frac{1}{\arctan\theta}$ $\frac{d^2y}{dx^2} = -\frac{b}{a^2 + aa^3 b}$ $\frac{\partial}{\partial x} = x - \frac{y_1 \left[1 + y_1^2\right]}{y_2} = a \operatorname{Se}(\theta) - \frac{\frac{b}{a} \frac{\operatorname{Se}(\theta)}{\pm an\theta} \left[1 + \frac{b^2 \operatorname{Se}(\theta)}{a^2 \pm an^2\theta}\right]}{-\frac{b}{a^2 \pm an^3\theta}}$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes

Srivam N $= asec0 + \frac{b}{a} \frac{sec\theta}{tan\theta} \frac{a^2 + an^2\theta + b^2 sec^2\theta}{a^2 + an^2\theta} \times \frac{a^2 + an^3\theta}{b}$ $= a \sec \theta + \frac{a^2}{a} \sec \theta + \frac{b^2}{a} \sec \theta \sec^2 \theta$ $= a \sec \theta + a \sec \theta + an^2 \theta + \frac{b^2}{a} \sec^3 \theta$ $= a \sec \theta \left[1 + \frac{1}{2}an^{2}\theta\right] + \frac{b^{2}}{a} \sec^{3}\theta$ $= a \sec \theta \left[\sec^{2}\theta\right] + \frac{b^{2}}{a} \sec^{3}\theta = a \sec^{3}\theta + \frac{b^{2}}{a} \sec^{3}\theta$ $= b \pm an\theta - \frac{a^2}{b^2} \pm an^3\theta \left[\frac{a^2 \pm an^2\theta + b^3 \sec^2\theta}{a^3 \pm an^2\theta} \right]$ = b tang - tang [a2 tang 0 + b2 sec2 0] $= b \pm an\theta - \frac{a^2}{b} \pm an^3\theta - b \sec^2\theta \pm an\theta$ = btan [1 - sec o] - a2 tan3 0 $=-b \pm an\theta \pm an^2\theta - \frac{a^2}{h} \pm an^3\theta = -b \pm an^3\theta - \frac{a^2}{h} \pm an^3\theta$ = Fb- a 1 +an 8 0 $= \left[\frac{-b^2 - a^2}{b} \right] + an^3 \Theta$ $\overline{y} = - \underline{[\alpha^2 + b^2]} + \tan^3 \theta$ Now, $\overline{x} = \left[\frac{a^2 + b^2}{a}\right] \sec^3 \theta$ $\Rightarrow \sec^3 \theta = \frac{a\overline{x}}{a^2 + b^2}$ $\Rightarrow \sec^3 \theta = \left[\frac{a\overline{x}}{a^2 + b^2}\right]^{\frac{3}{3}}$ $\Rightarrow \cot^3 \theta = \left[\frac{a\overline{x}}{a^2 + b^2}\right]^{\frac{3}{3}}$ $\Rightarrow \tan^3 \theta = \left[\frac{b\overline{y}}{a^2 + b^2}\right]^{\frac{3}{3}}$ $\Rightarrow \tan^3 \theta = \left[\frac{b\overline{y}}{a^2 + b^2}\right]^{\frac{3}{3}}$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes

Now (D-(2),
$$\sec^2 p - \tan^2 \theta = \left[\frac{a\pi}{a^2 + b^2}\right]^{3/2} - \left[\frac{by}{a^2 + b^2}\right]^{3/2}$$

$$\Rightarrow (a^2 + b^2)^{2/3} = (a\pi)^{2/3} - (by)^{2/3}$$

Replace π by π and y by y .

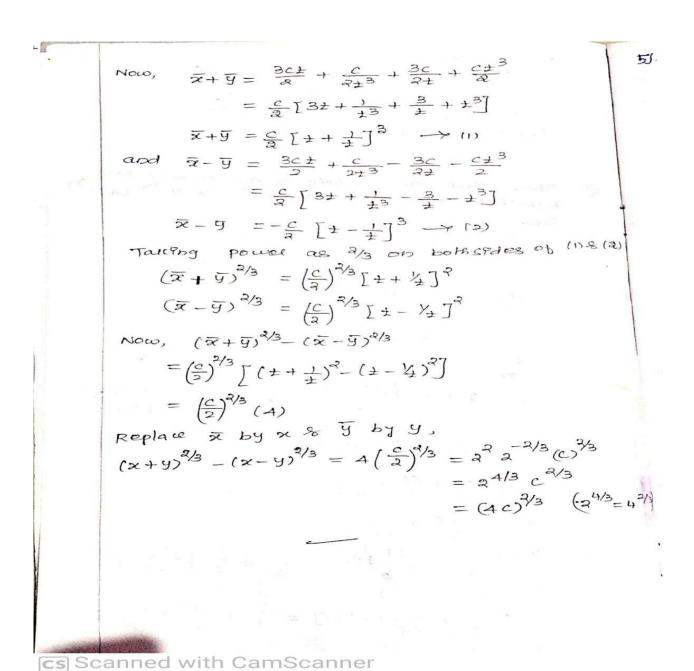
$$\Rightarrow (a\pi)^{2/3} - (by)^{2/3} = (a^2 + b^2)^{2/3}$$

Show that the evaluate of the rectangular $y/3$ by peribola $xy = c^2$ go $(x + y)^{2/2} - (x - y)^{2/3} = (y/3)^{3/3} = (y/3)^{3/$

(An Autonomous Institution)
Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes



(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes

51. Show that the evolute of sycloted
$$x = a(t + S^2n t)$$
, $y = a(1 - \cos t)$ by $x = a(t - S^2n t)$; $y - 3a = a(1 + \cos t)$ soln.

68 year $x = a(t + s^2n t)$ $y = a(1 - \cos t)$ $\frac{dx}{dt} = a(1 + \cos t)$ $\frac{dy}{dt} = aS^2n t$ $\frac{dy}{dt} = aS^2n t$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Evolutes

= a(++ s9n+) - 4a s9n t/2 cos t/2 = at + aspnt _ 2a [2 spn t/2 coc t/2] = at+as9nt - 29 S9n 2 42 = at + aspnt + 2a spn t = at - a spn t $\overline{x} = \alpha(t - Sfn +) \rightarrow (1)$ $= a(1-\cos t) + 4a \sec^2 \frac{1}{2}$ Sec^4 t/2 = a (1-cost) + 4a sos 1/2 = a-a cost + 2a I2 coet 42] $= a - a \cos t + 2a[1 + \cos t]$: 1 + \cos 28 = \cos^2 6 = a-acost +2a+2acost y_2a = a + a cos + → (2) Replace & by x & y by y Pn (1)&[2), x = a(t- SPn+) & $(9-2a) = a + a \cos t = a (1 + \cos t)$ Hw FIND the eqn. of evolute x 2/3 + y2/3 = a2/3 IJ. Show that the evolute of the yelord x = 9 (0-SPAD); y = 9 (1-6050) & another cyclos x=a(0+ spn0); y= -a(1-cos 0)