

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ401- 3D PRINTING FOR SPACE COMPONENTS

UNIT-IV EXTRUSION BASED AND SHEET LAMINATION

PROCESSES

TOPIC: SHEET LAMINATION PROCESS IN 3D PRINTING TECHNOLOGY

NAME: Mr.N.Venkatesh., M.Tech Assistant Professor Aerospace Engineering SNS College of Technology

INTRODUCTION TO SHEET LAMINATION

- 3D printing is an additive manufacturing method that constructs objects layer by layer from digital models, providing design flexibility.
- It revolutionizes manufacturing by adding material to create complex structures across diverse industries.
- Sheet lamination is a layered manufacturing technique in 3D printing, involving the stacking and bonding of thin sheets to construct objects.
- It offers versatility in material usage, including paper, plastic, and composites.

LAMINATED OBJECT MANUFACTURING (LOM)

Laminated Object Manufacturing (LOM) is a layered manufacturing technique in 3D printing.

Here are the key steps in the LOM process:

- **1. Layering:** Thin sheets of material, often paper or composites, are stacked layer by layer to form a three-dimensional object.
- 2. Adhesive Application: Each layer is coated with adhesive, ensuring proper bonding between the layers during subsequent steps.
- **3. Lamination:** The stacked layers are firmly pressed together using heat or pressure, activating the adhesive and creating a solid bond.
- **4. Cutting:** The shape of the object is defined by cutting away excess material. This cutting process follows the contours of the intended design for precision.
- **5. Finalization of Layers:** The layering, adhesive application, lamination, and cutting steps are repeated iteratively until the entire object is built layer by layer.
- **6. Post-Processing:** Additional post-processing steps may be required to enhance the surface finish and meet specific requirements for the final product.

ADVANTAGES OF LOM

- **Cost-Effectiveness:** LOM is often more cost-effective than some other 3D printing methods, making it suitable for producing large prototypes and models.
- Versatility in Materials: LOM supports a variety of materials, including paper, plastics, and composites, providing flexibility in material selection based on the application requirements.
- **Speed of Prototyping:** LOM is known for its relatively fast prototyping capabilities, enabling the quick production of large-scale models and prototypes.
- Large Build Volumes: The process is well-suited for creating objects with large dimensions, making it advantageous for projects that require significant size and volume.
- **Minimal Support Structures:** LOM typically requires minimal support structures during the printing process, reducing the need for post-processing and simplifying the overall workflow.

DISADVANTAGES OF LOM

- **Surface Finish:** The surface finish of LOM-produced objects may not be as smooth as those from some other 3D printing technologies, requiring additional post-processing for a polished appearance.
- **Limited Resolution:** LOM may have limitations in achieving fine details and intricate geometries compared to technologies with higher resolution, impacting the level of detail in the final product.
- Material Constraints: Although LOM supports a variety of materials, it may not be suitable for applications that demand specific material properties or advanced materials available in other 3D printing methods.
- Waste Generation: The cutting process in LOM generates excess material waste, particularly when creating objects with complex shapes, which can be a concern for sustainability.
- **Layer Visibility:** The layering nature of LOM can result in visible layer lines on the finished product, affecting the aesthetic appeal, especially for objects with a smooth surface.

APPLICATIONS OF LOM

- **Prototyping in Automotive Design:** LOM is commonly used for creating large-scale prototypes of automotive parts and components, allowing engineers to assess form, fit, and function before moving to mass production.
- Aerospace Components: In the aerospace industry, LOM is utilized for the rapid prototyping of components and structures, offering a balance between cost-effectiveness and speed in the development phase.
- Architectural Models: Architects use LOM to build detailed and large-scale models of buildings and landscapes, providing a tangible representation for visualization and client presentations.
- **Tooling and Jigs:** LOM is employed in the production of tooling and jigs for manufacturing processes, where cost-effective and quickly produced prototypes are beneficial for testing and optimization.
- Educational Models: LOM is employed in educational settings for creating physical models that help students better understand complex concepts in subjects such as biology, geography, and engineering.

ADVANCEMENTS AND CHALLENGES IN LOM PROCESS

Advancements in LOM Process:

- 1. Enhanced Material Compatibility: Recent advancements in LOM include increased compatibility with a wider range of materials, expanding the application possibilities to meet specific industry requirements.
- 2. Improved Precision and Resolution: Technological developments have led to improved precision in layering and cutting, enhancing the overall resolution of objects produced through the LOM process.

Challenges in LOM Process:

- 1. Surface Finish Limitations: Despite its advantages, LOM may face challenges in achieving smooth surface finishes, necessitating additional post-processing steps for certain applications.
- 2. Material Waste Generation: The cutting process in LOM generates excess material waste, posing challenges related to sustainability and environmental concerns.

CONCLUSION

- Versatile and Cost-Effective Solution: The LOM process remains a versatile and cost-effective solution for various industries, particularly in applications where large-scale prototypes and models are essential.
- **Continuous Evolution:** While facing challenges, the LOM process continues to evolve, with ongoing research and development aimed at addressing limitations and expanding its capabilities in additive manufacturing.

THANK YOU