
Intermediate Code Generation

• In compiler, the front-end translates a source program into an 
intermediate representation from which the back end generates 
target code. 

• Why is intermediate code used ?

– Source 🡪 Target code generation 🡪 n optimizers and n 
code generators

– Intermediate code 🡪 1 optimizer

• Intermediate Representation
– Syntax Tree (parse tree)

– Postfix Notation

– Three Address Code

28-Oct-21 UNIT IV-AT&CD-M.SHOBANA,AP/CSE 1



Intermediate Representation
1. Syntax Tree/Abstract Syntax Tree (AST)

a*(b+c)/d •Graphical Intermediate Representation 

•Syntax Tree depicts the hierarchical structure 

of a source program. 

•Syntax tree (AST) is a condensed form of 

parse tree useful for representing language 

constructs. 



Parse Tree Vs Syntax Tree



Directed Acyclic Graph (DAG) 

DAG also gives the hierarchical structure of source program but in a more 

compact way because common sub expressions are identified.



Intermediate Representation
2. Postfix Notation

• Infix Notation 🡪 a+b

• Postfix Notation 🡪 ab+

• Ex: (a+b)*(c+d)+(a-b) 🡪 ab+cd+*ab-+

• Ex2: a=b*-c + b*-c

• Postfix notation: abc-*bc-*=



Intermediate Representation
3. Three Address Code

• <3 references – 3 Address Statement

• Example1: a+b*c+d

• t1=b*c

• t2=a+t1

• t3=t2+d

• Example2: a*-(b+c)

• t1=b+c

• t2=uminus t1

• t3=a*t2



Intermediate Representation Three Address Code

• 3 representation of Three Address Code

– Quadruple
• 4 fileds (op,arg1,arg2,res)

– Triple
• 3 fields (op,arg1,arg2)

– Indirect Triples

a = b * – c + b * – c



Indirect Triples – pointer (references)

a = b * – c + b * – c



Declaration and Assignment 



Intermediate Code generation for
Boolean Expressions 

• Boolean Expression

– Logical values

– Conditional Expression – change the flow of program (if-else, do-while)

• Boolean operator 

– And 

– Or (lowest precedence)

– Not

• Example

– E → E or E 

– E → E and E 

– E → not E 

– E → (E) 

– E → id relop id 

– E → TRUE E → id 

– E → FALSE 

Intermediate Code generation for
Boolean Expressions 



• Numerical representation of Boolean Expression

– Example1: A or B and C

• Three Address Sequence:

• T1=B and C

• T2=A or T1

– Example2: A<B 🡪 if A<B then 1 else 0

• Three Address Sequence:

• 1. If A<B goto (4)

• 2. T=0

• 3. goto (5)

• 4. t=1

• 5. ---

Intermediate Code generation for
Boolean Expressions 



Attributes used for 
“if E then S1 else S2”



Intermediate Code Generation for
Switch Statements

• switch E 

• begin 

• case V1: S1 

• case V2: S2 

• … 

• case Vn-1: Sn-1 

• default: Sn 

• end 

• Switch Statement 🡪 temporary t , two new labels test and next are generated

• Each case statement 🡪 new label is created and entered into Symbol Table



• Actions taken during Calling Sequence

– Procedure call – Activation record - space allocation

– Evaluate the argument of called procedure

– Save the State of Calling procedure

– Save the return address

– Generate Jump to the beginning of code

– Example:
• (1) S→ call id(Elist)

• (2) Elist → Elist,E

• (3) Elist → E

Intermediate Code Generation for
Procedure Call



BACKPATCHING

• Easy way to implement syntax-directed definition of Boolean 
Expression

• Boolean Expression – Single pass – cannot predict the labels 
where the control will jump 

• Backpatching – address instead of label is used 

• Three operations:
– Makelist(i) – list with I which points to qudraple

– Merge(i,j) – concatenate i list with j 

– Backpatch(p,i) – inserts i as target label for each of the statement pointed 
by p



• Process of backpatching

– A marker Non-terminal M – next instruction to be executed 

– Example

• E🡪 E1 and M E2

• Incomplete jumps with unfilled labels 🡪 E.truelist and 
E.falselist

• E1 – false , E is also false 🡪 E1.falselist becomes a part of 
E.flaselist

• E1 – true 🡪 E2 test 🡪 E1.truelist becomes the beginning code 
for E2 🡪 marker non-terminal M 

BACKPATCHING


