11/21/2023

= Control Stack/Run Time Stack S S

= -~

f/u;r///;) 1IN
Control stack / Run time stack — keeps track of live procedure activation

A procedure name is pushed on to the stack when it is called (activation
begins) and it is popped when it returns (activation ends)

Information needed by a single execution of a procedure is managed using
an activation record or frame.

When a procedure is called, an activation record is pushed into the stack
and as soon as the control returns to the caller function the activation record
IS popped.

main () A() B()

A
Y

(@]
~
S’

b F ) }

Before going to
C() activation
record of main

Before going to
B() activation
record of main
and A() in stack.

Before going to
A() activation
record of main is

created when A() and B() is pushed

is called in stack.
activation record
of A() is created.
UNIT IV-AT&CD-M.SHOBANA,AP/CSE 5



Control Stack/Run Time Stack S S

FIrorionls

readareay (b

mainh ———— readarray() execution completes { popped from stack ).

05 is called so it Enters the Staclk.

iy
Partitionf 1,mn) e \

S0 i .
Crs(l.m) I;:Eﬂ“dlrrjin[} OS(1.n)
mmain poppe /

Partitiomn{ 1. m)

Partition Execution completed (popped out of stack)

Now QS is called again so it enters the Stack.

main()
QS(1,4) \
read:;rray()
QS(1,n) (popped) Q?Elsﬂ)
main() _-" \

Partition(1,n) QS(1,4)

11/21/2023 UNIT IV-AT&CD-M.SHOBANA,AP/CSE 6



O Storage Organization S' S

ANS LTy rions

* Runtime storage can be sub divided to hold

— Target Code - Text part (Memory requirement is known at compile time) -
doesn’t change @runtime

— Static data objects

— Automatic data objects is Stack - procedure call random manner [stack -
procedure]

— Dynamic Data Objects is Heap - managing memory allocation of memory
for variables @ runtime

Code Area

Global Static Area

Stack The Stack grows towards
l Higher Memory.

Heap grows towards lower

Heap Memory.

11/21/2023 UNIT IV-AT&CD-M.SHOBANA,AP/CSE 7



\/

{\g\x \ "\~ ?

~=

O 1k
[

o Storage Allocation Strategies D ¢ o

» Static Storage Allocation
— Recursion is not supported

— lays out storage for all data objects at compile time
— Ex: FORTRAN

» Stack Storage Allocation
— Recursion is supported

— manages the run-time storage as a stack. (procedure is called its activation
is pushed into stack)

— Stack activation are pushed and popped
* Heap Storage Allocation

— Recursion is supported

— allocates and deallocates storage as needed at run time from a data area
known as heap. Example:malloc

11/21/2023 UNIT IV-AT&CD-M.SHOBANA,AP/CSE 8



