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Control stack / Run time stack — keeps track of live procedure activation

A procedure name is pushed on to the stack when it is called (activation
begins) and it is popped when it returns (activation ends)

Information needed by a single execution of a procedure is managed using
an activation record or frame.

When a procedure is called, an activation record is pushed into the stack
and as soon as the control returns to the caller function the activation record
IS popped.
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mainh ———— readarray() execution completes { popped from stack ).

05 is called so it Enters the Staclk.
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Partition Execution completed (popped out of stack)

Now QS is called again so it enters the Stack.
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* Runtime storage can be sub divided to hold

— Target Code - Text part (Memory requirement is known at compile time) -
doesn’t change @runtime

— Static data objects

— Automatic data objects is Stack - procedure call random manner [stack -
procedure]

— Dynamic Data Objects is Heap - managing memory allocation of memory
for variables @ runtime

Code Area

Global Static Area

Stack The Stack grows towards
l Higher Memory.

Heap grows towards lower

Heap Memory.
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o Storage Allocation Strategies D ¢ o

» Static Storage Allocation
— Recursion is not supported

— lays out storage for all data objects at compile time
— Ex: FORTRAN

» Stack Storage Allocation
— Recursion is supported

— manages the run-time storage as a stack. (procedure is called its activation
is pushed into stack)

— Stack activation are pushed and popped
* Heap Storage Allocation

— Recursion is supported

— allocates and deallocates storage as needed at run time from a data area
known as heap. Example:malloc
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