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Columns and Struis

14.1. INTRODUCTION

Column or strut is defined as a8 member of a structurs, which ia sublected to axial
sompressive logd, If the member of the strusture i3 vertical and both of ita onda are fixed
~Agidly while subjected to axlal compressive load, the mamber ks knoem ag eslisme, [or example
@ vertical pillar between the roof and foor, IT the member of the structure is not vertical and

2@ or hath of it ends are hinged or pin jeined, the bar 18 knewn as sirud. Examples of strots
are - connecting rods, piston rods st

8.2 FAILURE OF A COLUMMN
Tha failure of & eolumn takes place due to the anyons of the following strecsess sot up in

wae polimans ;
(i} Divect eompressive stresses,
(if) Buckling stressss, atud
eie] Combined of direct comapressive and buackling stressas,

1821, Faillura of & Short Column, & short column of anifarm crass-sectional area A
subjected to an axial compressive boad P, s shown in Fig. 19.1. The compressive strass induced
o given by P

I
Py

If the compressive load on the short column is gradually inereased, a
~tage will reach when the column will be on the point of failore by crushing,
s b gtress induced o the column correspending to this load is known as crush-
ing stress and the baad is called crashing boad.

Let P, = Crushing laad,
o, = Crushing stress, and ‘/-/r
A = Area of proes-gection,
F |
Then o, = ':*5 : P

All short columns fwil due to crushing. Fig. 19.1

19.2.2, Fallure of a Long Column, A long column of uniform crass-sectional ares A and
ef langth |, subjested ta an axial compressive lond P, is shownin Fig, 19.2. A calumn is known as
"ng column if the length of the column in comparisen to its lateral dimensions, is very large.
wch columns do nob Fail by crushing alone, bat also by bending {also known beckling) as shown

™
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in Fig. 19.2. The load at which the column just buckles, = known & buckling
Ioad wr critical fust or crippling food. The buckling load is less than the crash-
ing load for o bong eolomn, Actually the value of buckling load for long columne
ia bow wherens for short enliusnns the value of backling load s relatively high.

Refer to Fig. 102

Lat = Length of a long column
P = Laad (eoenprossive) at which the column has just hackled
A = Crags-actional nrea of the colamn { B}
¢ = Maximum bending of the calumn at the centee

=

F
oy = Stress due to divect load = —

A
P
nb-snuduetuhmﬂmgmﬂwmmﬁﬂﬂtﬂumnz—gg- i
where Z = Section moduluz about the axis of banding.
The extrome stressns on the mid-sectlon are given by Fig. 18.2

Magimam gtress = oy, + 4,
and Minimum stress = oy - Oy

Tha column will fail when maximum siress {ie.. 0, ¢ @) i3 more than the crushing
etrosa . But in cuse of long columns, the direct mmpressive strasses are negligible 55 compared
to buckling stresses. Henen very long columng are gubjected to busckling stresses only.

19.3. ASSUMPTIONS MADE IN THE EULER'S COLUMN THEDRY

The fallowing assumptions are mode in the Euler's column theary :

1. The column is initially perfectly straipht and the load is applied axially.

% The sroas-geetion of the eclumn is aniform throughout its length.

3. The columm material is perfectly elastic, homogensogs and isndropic mnd obeyvs Hooke's
barwr,

4. The lenath of the calumn is very large is compared (o (ts lataral dimensiona.

&, The direct streas ks very smell as comgared to the bending stress,

A, The ealumn will Cafl by buckling abome

7. The sell-weight of column i negligible

19,4, END CONDITIONS FOR LONG COLUMNS

In case of Joog colwmns, the stress due to direct boad is very amall in comparizen with
the stress due to buckling. Heace the failure of long columns take place ml:ihalj:' dise to buck-
ling {or banding). The fallowing four types of ead conditions of the columns are mportant -

1. Hoth the ends of the column are hinged (or pinned).
@ Omve ened is fioed and the other end i8 fres.

%. Both the ends of the column are foed.

4, One end is fxed and the pther i pinned.

Far # hinged end, the deflectinn is xero. For 8 foed end the deflection and slope are 2oro.
For & free end the deflection is not sera.
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149.4.1. Sign Conventions, The fallowlng gign con-
ventions for the bending of the columns will be uaed :

1. A moment which will bend the column with its
conveeity townrds its initial central line ag shown in
Fig. 19.3 (a} is taken az positive, In Fig. 19.3 (e}, AR

ts the initial centre line of a endumn. Whether the
colurmn bends taking the shape AR or APF°, the moment
producing this type of eurvatiars is positive,

2. A moment which will tend to bend the column
with b8 concouity towards its inltial centre line as shown
in Fig. 19.3 (b) is taken as negative.

1} Posid v
Fig. 183

18.5. EXPREEEION FOR CRIFPLING LOAD WHEN BEOTH THE ENDE OF THE
COLUMN ARE HINGED

The lond at which tha eolusnn just buckles for bemdsl i called crippling
lzad. Consider a eolumn AR of length ! and wniform crass-sectional ares, hinged
ak both of its enda A and B. Let P be the ceippling load nt which the column
hag jusl buckled. Due to the crippling kad, the cobumn will deflect into a curved
formn ACE s shown in Fig, 19.4.

Consider any section at o distance & from the end A

Let ¥ = Deflection (latoral displacement) ot the section.

The moment dise to the crippling load at the seetion = — P ¥

{— ve sign is taken dus b cign eonvention
given in Art. 19.4.1)

i
But mament =E.l'd—2§. I
s +
P

Equating the twa moments, we have

i
E]"ﬁw—f:'._}- o Efi:-at-l-l"-;'-ﬂ

&
s

d%y P
e =3 + e ={ _
The selution® of the above differential equation s

,-c,.m[;‘ng .u,,.-.u[;‘@ Al

where O, and . 3
e €4 and Cy are the constants of integration. The valuee of C, rnd €, are obeainoed as

, 44 P E
Thznquatlnnﬁ*EHI:ﬂmh:wﬂﬁuuﬁ-+uir-ﬂwhqn¢“-£¢r.;=E

The selution of the equation iz y = ¥ o0a (o 2] + Oy ain (o2}

SO LA P L O
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(i) ALA x=0and y =0 (5ea Fig, 19.4)
Substituting these values in sguation (], we gat
=0, . eos 0%+ £, win

2l w1+l (v cos 0w 1 and gin 0 = Q)
=0
Cy=0. i)

i) AL B, x =1 and y = 0 {See Fig. 19.4)
Bubstituting these valoes in equation (), we gel

P Fa
D:ﬂi_m[lwilﬁ]ic!.ﬁn{txilﬁl
M
-i]-+|f.'_=.m'.n{1"’ ﬁ] [ ) = from equation (0]

= {y sin [I %] ~ i}

From: equstion (), it iz clear that sither C, = 0

ur Rim [!E]-ﬂ.

LEN -ﬂ,“uni’ﬂ?iuu]uuuqmltaum.lhﬁhfmm pguation (i) we will get y = 0. This

means that the bending of the colamn will be zevs or the column will not bend at 2l Which is
Tk trae.
e
= siE { or gin xor 5in I arsin dnar .o
ar I.,llg ={ar x or 2= or 30 oF ...
Taking the least practical value,
YR ="
2
ar F= H,aﬂ- 81}

196, EXPRESSION FOR CRIPPLING LOAD WHEN ONE END OF THE COLUMN
15 FIXED AND THE OTHER END I8 FREE

Caonslder a column AR, of length { and uniform cross-sectéfonal area, fxed at the endA and
free at the end B, The free end will sway sideways when load is applied at free end and curvature
in the length ¢ will ba similar te that of npper half of the column whaes both ends are hinged.
Let Pia the ceippling load at which the cohimn has just buckled. Due to the erippling load F, the
evdumn will deflect a3 shown in Fig. 19,5 in which AB is the ariginal position of the columnn atd
AR, is the deflacted position due to crippling load P. '

Congider any section at a distance x from the fxed end A,
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Let ¥ = Deflection (or lateral displacernent) at the sedtinn P
a = Doflestion at the [ree end B

Then mament at the section due to the erippling lead = P iz - )

{#we aign ia taken dun to 23gn conventlon given in Art, 19.4.1)

i
L

But moment i= also
2 Byuating the two mdaments, we ped r

2
ﬂj—j-mﬂ—yb-r.u-h;

B,

T Er L S U

E'J:n

&

i P :
or B YECYTE S A Fig. 19.5
The solution® of the differential equation s

p-EI.m[E‘%Jiﬂa-:h[:.ﬂlﬁlfu ki)

whera O and C, are constant of integration. The valoes of O and O, are obtained from
noundary conditions. The boundary conditions are
(i} Far a fixed end, the deflection as well as slope is zera.

d
Hence at end A (which is fisead ), the deflection y = {} and also slopa LY

dx
Henco at A, x = Dand y= D
Bubatitubing these values in equatian (c), we got
0=C,.con0+Coaind+a
el xl+C xlen (v eos b= 1, sin 0 =0F
=L, +a
Cy=—u 4]

Al ﬂ,I=ﬂﬂ1&%=ﬂ.

Differentiating the squatien [ woot, &, we get
ey . P '
— . == — . — E — N J—
ax " ”""“[“\IEJ] Va7 * =“"”[I|IE: V57 *°

*The squation (4] can he writben a=

+ ' P
oF t o uy = af xa where o = TRt T7]
|
The: enmeplote sobution of this equation s ¥ = C, cos (o . xl+ O, sin (o .l + L ;¢
)

erue{E s}y [E 5] o
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. fwl-B) B )

_ aly
But at A,z = and T =0,

., The abowe aquation bacomos as

|'_p
ﬂn-lll_-'.-l_- E.ﬁnﬂ'l'{-.;urﬁrl}ﬂﬂﬂ

r P F
--ELJE:ﬂi-ﬂg. ERI"":I i
From the above equation it ie elear that sither O, = 0,

I
e [I'_
ar I|I [,

But for the crippling load P, the value of f%} cattol be equal to zevo,

o Cy=1D,
Suhsgtituting the values of £ = - a and O, = 0 in equation (i), we gel

I-—ﬁ..m[x %]-rn. : A}

Bt at the free and of the column, x = Pand ¥ = &
Substituting thess values [n aguation @), we get

A
. ou-acu(1{T ) eon[1.{E) e

But ‘e’ cannat be agual to zera

X i i
cos | E I-I:IIc-uzur-:m 4 0r CoE 2 [T

LA
. H_E E E.....

Toking the least practiesl waloo,

P = ||F.L
£ Bz " OYEIC H
=
(¥}
- LA108.2)
“r F e

19.7. EXPRESSION FOR CRIPPLING LOAD WHEN BEOTH THE ENDS OF THE
COLUMN ARE FIXED

Consider 2 codumn AR of length { and uniform cross-sectional area fixed at bath of it=
ansdsd and B as shown in Fig, 19.6. Lat P is the cripgling load at which the column kas backled.
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Dkie to the crippling load P, the celumn will deflect ag shown in Fig. 196,
[ oo fixed ands, there will ba fixed end moments (gay M) at the ends A
and B, The fiwed afd moments will be aceting in such direction so that slope
ai Ehe fixed ends hecomes xero.

Conaider o section at a distance x from the end A. Lat the deflection
af the cxlamn at the seclion ia ¥, As both the ends of the columb are fized
and the celumn carries & crippling load, there will be some fixed and mo-
ments at A and B,

Let M, = Fixed end moments at 4 and B,

Then moment at. the section = My = Py

e
Bul moment at tha secthom i n]snlEff—#f
- Equating the tvwo moments, we get

-:f:_'r
Bt =M= b

e S
ar s Ty=My
' dy P M
ar Tt E YT (A}
My PP M
PSR CP

The sclution® of the above differential squation ls

}I!E,-m[#'\lg]irﬂt.ﬂh[x'@-i% e df)

where O and O, are conatant of intsgration and their vahees are abtuined from boundary
conditions, B-uunﬁm' eondithons ave

ALA, x =0,y =0and also % = an A 15 & fxed end.

(AL B, o=, ¥ =i and also E = ) pg B is alsn & fived end.

“The equasion LA} sun be written ns
%iﬂw‘:ﬂ_‘p’l%ﬁ" whma:*:% or u:%
The comaplata aolation of thiz equation i
A
_u-='l.'-':I:-:Il-lin.-r]+'l.'-':.siu-|u.:l"l1-E’;E
B P P M,
_ﬂlm[JEIF]+ﬂlﬂlﬂ[.||%I=]+m

i
im o fB)ocnlndg) ¥
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Substituting the waliue ¥ = 0 and 5 = 0 [n equation (i), we get

M
lil-l,'.'l:-:!I-l--l'_'!iznil}-i-?il [ comQ=1)
A
=G+
Af
El:'?:l _ -]

Differentinting the eguation (§), with reapect o 2, we get

dy . | P |'.F ||15 P
E: ..[—;I]um[:t- ﬁ] E*I’Jlml[#- E] HI_I_l-{l
P P o I
== O sln[x. ﬁ] E+E|mﬂ[1-”|:ﬂ]. T

oy

Euh:tltwﬂngﬂuva]ue:::ﬂ'mdE:ﬂ.maa.l}m'ﬂaqumqnhﬂmma

Dme Oy x 0% Cyx L o ( 8in0=0and e d=1)
From the above squation, it & dear that aither O = 0 v %-{hﬂutfnrngi'rm
plinzhndP.thardunflllﬁiTmnmthfmmIMM.

Oy =1
Hmvmhqtihjthi;g'thevﬂueuﬂl'ﬂ'l=—%lahdl:'=={|in-34:|u-lﬂm{l-ll,'ﬂ'¢l;ﬂ

o2 e[ 0 M

- - % m[rE] + -l-%']r L

At the end B of the column, x = § and v = 0.
Bubstitnting these values in equation {&E@il, we got

o My P, Mo
h=— F ma[r I o
Ll P M
My Ny
- ""’“[‘ m} r
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P

I. 7 =1y, 2m, dn, B, ...
Taking the keast practical valae,
a
P n*Ef
_= = : LA18,3)
I =2 or P T

19.4. EXPRESSION FOR CRIPPLING LOAD WHEN ONE END OF THE COLUMN 1S5
FTXED AND THE OTHER END IS HINGED (OR PINNEL)

Consider & column AR of length § and uniform eross-sectional area
fized at the end 4 and hinged at the end 8 se shown in Fig. 19.7. Let P iz
the erippling lead at which the column has buckled, Thue to the crippling

lad P, the eolumn will deflect as shown in Fig, 19,7,

There will be fixed end moment (W} at the fxed end A, This will
" try to bring back the slope of deflectad column zere at A. Henoa it will b
acting antidlock wise at A. The fixed end moment M, at A 1= to he hal-

anced. Thiz will be balanssd by a horizontal re-a-:ﬂu-n{iﬂ&t the top end I
as shown in Fig. 14,7,
Cumsider o soction at o distanes x from the and A.
Let v = Daflestion of the column at the section,
A, = Fined end moment at A, and
H = Horigantal reaction st B
The moment st the section = Momaent dus (o crippling lond at 8
+ Moment due to hortzontal reaction at B
w= P v+ 5 {l-x)
But the moment at the section & nlso
7
-EIE

Equating the twa moments, we get

]
EEE-—F-:-Hurx:

&
or EI%+P.:=H-:.!—#]

d'y P H g
aF EE—!-E ._'r'l-ﬁ{-r—l]' ﬂ:ll.'l."l.d.l'llgb]'El!-} "I"""I
H

P OHi-z)
BT P

I
= B {I—x]xF-

K.NEHRU, M.Tech.,(Ph.D)
Assistant Professor 19AEB201 Aero Mechanics of Solids



Thet sodution® of the above differantial sauation ia

i |IP! [P} H
j:ﬂ,ml# W -E‘Esln[. Ef |+ = Ny

where € and €, are constants of integration and thelr values are obdained from boundary
conditions. Boondary conditions are -

(£} At the fixed end A, 2 = {, ¥ = 0 and ol dy =D

. Fris
{ie} At the hinged pnd B, r = { and p = 0.
Substituting the value x = 0 and y = 0 ineguation (1), we ged

I'.'Il--lff,n |+Et:-:|]'l-%{.r-|:|:llﬂ1'l- EF—':
H
f:-'l'-"F-! - hEE]

Differentinting the equation (i) w.rt x, we get

el 5] {5l )
(e fB) e f3) T2

ey

Mﬂ.:ll.‘.lmdi—:=ﬂ.
P H
D= -G w1, T F (- sin0=0,c0s0=1)
r H E‘IFE_I
“Coygr = " Bp F
N i i
El.l.lﬂt-itl.rl'.n'lgih:'.rnhruufﬂ'.-— R A and r :I.I.'I-EI'I:||.I.I.|:-I'l:II'| CF, e ed

Cy=
i LA SNL PN PRLA DY
¥y=-'p -In:-ma[-t PP E Edn[x E‘I]+ Fﬂ—x]

*The eqantion {4) can be writlon ag

d'y H P P
IEJ-J:.E.J--EEI,!-.F_I-W-E*-E L B

The complete solation of this equation is

iHif-axl

¥u il eosia. xy s Cpsinfa . x)+ W
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Atthepnd B = {and y = (.
Henee the above equation becomes as

_ar |'F H B rlH
0 3 !m[! EJ-‘-P T -'I-m[.t -ﬁ-]ip =11
" ‘(P H |E P
'I'—PIE I-E—r]'I'F Fﬂh‘-[ﬂfﬁfﬂ
H |EI . P i P
: v (| 5 e (e
ol (F\_H P [F P
ar nn{.l' _}_]_ - .IHH B .m[{ _f]
-1 E F
=i. i m[g_ T
T F
or t.m[.?. TF L EI
The selution to the ahove equation s, 1 . % = 4.5 radinns
Bquaring bath sldea, we get
.F'
" E:LE‘-EU.EE
P—m.r_—.—%
But approximataly 200925 = 252
2x El
I {184}

I.:

188, EFFECTIVE LENGTH (OR EQUIVALENT LENGTH) OF A COLUMN

The effective length of o given eolumn with given end conditlons is the lengih of an
equivalent column of the same material and croas-section with hinged ands, and having the
value of the erippling load equal to thot of the given column. Efective length §s also callad

equivalant longth.

Let L = Effoctive length of n colomn,

{ = Artugl length of the column, and
F = Crippling load for the column.

Themn the crippling loadd for any type of end condition is given by

BT
L. :

The crippling load (P) in terms of actus] lngth and effoctivg length and also the velation

batween effactive length and actosl length are given in Table 19,1,

F= LA1EE

r
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& Mo, | Eed conditions Er-.t-.m'i-t.s.rj-:;:ld in fermes of Relution htworn
of coliwng effeetine fingdh
Actued feugth Effeciine banghk and anlval Jeegth
ey 2ey
1. | Both ends hinged = r"h—g L =1
i : n—Ef
9. | Cine ead is Axed “Tgi T L =%
ned other is free _
An® BT Bl I
3. | Bath emds fixed - 7 Fl_ - ! L 5
A ET *Ej I i
4. | tipe and fsed and —A %r | fo = &
other iz hingwd

Thers are twe values of moment of inertia e 1 ond [

The valae of § (mement of inertia) in the above exproaalons should be tuken as the least
vilue of the two moments of inertin as the column '-'.IJI terd to bend in the direction of least
minment of inertia

18.9.1. Crippling Stress in Terms of Effective Length and Radius of Gyration.
The momant of inertia (/) can be exprogeed in terms of redius of gyration (&) as

T = Ak? whore A = Areas of cross-sectian.

An [ ig the least valus of moment of inertha, then
E = Leagh rading of joretion of the columi GRCLEIM.

Mow crippling load P in terns of effective bength is given by
"Bl xE s AR

Lr Lt

!EE = ..4 :I'I:E:El . 1

O

B

And the siress corresponding to srippling lond is given by
_ Crippling load _ F

P [ I=AE)

L 19.6)

Crippling streas

{Subatituting the value of )

LLHRT)
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195.9.2, Slenderness Radio, The rotio of the actuel length of & column to the least
radius of gpyration of the column, 12 known a2 alamderness ratio,

Mathpmatically, slenderness ratio is givan by

g _ Actus] langth L
Slenderness ratio = radinn of gyration Lol 18 B
1910, LIMITATION OF EULER'S FORMULA

From sqguation {19.8), we have

3
Crippling stress = ———

%)
&
n'F

For a column with bath ends hinged, L_= [, Hence Crippling stress hecomes as = —=
I
()

!
where i is slemdarness ratia.

IF the slenderness eatip {:’.r., é:l 18 emall, the ¢rippling stress {or the stress at failure)

will be high. But fisr the column material, the erippling stress cannot be greater than the
erushing stress. Hence when the slendetness rotio is less than a cartakn Himdt, Buler's formuala
gives & value of erippling etress greater than the crushing stress. In the limiting case, we can
find the vidue of I/ k for which erippling stress is aqual o crushing stress,

For example, for a mid steel colimn with both ends hinged,

Croshing stress = 330 Mimm?

Young's modules, £ = 2.1 x 10" N'mm®.

Equating the crippling strass ta the crushing stress corresponding o the minimum value
of slenderniess ratio, we pet

Crippling stress = Crushing stresa

a B : 3
If’ e —aa or x0T e
i)

B

&

IR ST

(3] - 22t e
I

" Eﬂq|ﬁmtﬂ_ﬁ?|ﬂ-ﬂj"m}-

Honee, if the slenderpess ratio is less than 80 fie mild stesl column with both ends
hinged, then Euler's formula will not be walid,

Problem UL A salicd rowed her 3 m long aed 5 o o diomeber i osed as a stred with
both eneds hamged. Deterpang the crippling (or collopsing) load, Take E = 2.0 % 1 Nimm?,

L)
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Hol, Giiven :

Length of bar, { =3 m = 3000 mm

Diarater of har, ol = fi o = 50 man

Young's moduluz, E =20 x 108 Nimm?®

Moment of inertia, r-nE—’:;J_f-':an.EE.m*-meawm'mﬂ

Lat. P = Cripplicg load.

Ax both the ends of the bar are hinged, hence the erippling load is given by equation

(RE RS
=2 El :lLta-:E!:l'I}E:-:ﬁ'ﬂ'.EEHl.i}"'
T 000"
= §7T25R N = 87.288 kN. Ans,
Problem II}.ﬂ.Fn.rm.pranemH.Iiﬂsrm!mﬁnfpphnfdﬂﬁd,wm!mumﬂ
it wsed joiek the follnwing evnadfions :
IEJDM#HdﬂfmﬂrHtiiﬁtﬂiﬂMﬁEﬂhtdeiﬁfrﬁ
(i1 Both the ends of stret are fired
{iit) Oine enad i fived and ofhar s hinged.
ol Giver @
Thea data from Problemn ]H.l,hénﬂliﬁ}m.dinm:tcrzﬁl}m.E-Eﬂxlﬂ‘ﬂfrnm*
and [ = 30068 x 10 momt.
Let P = Crippling load.
[E]Ed@ﬁ@hﬂ;ﬁﬂummdhfhﬂuﬁafﬁuﬁﬂhﬁ
3 2 5 i
. atEl  x® w2 = 10 w3k = 10
Using equation (15.2), P= -JH!E = PITTTL —
Alternate Method
The crippling load for any type of end eondition is given by equatan (18.5) asg,
I—T!E" il
P= w“
L,
where L, = Effective length.
The effective length (£ ) when cne end is fiwed and other end is free from Tahle 19.1 on
page 81% i3 pivon as

= IGRZ2 M. Ans,

L_Ezﬂ-Eu-i:l]I}[l=El:ﬂ:ﬂ:lmm
Substituting the value of L in squatsn (i), we got
w2 107w SOGE « 100

P= - = 1GREE N, Ans.
G0N
Iﬁ}ﬂipplirtg‘ﬁmduﬂmt-!lﬂmmeﬂdlumﬁiﬂ -
dxtEl ; dnt 2w 107 = 3068 :-ll_ii

Using equation (194}, F= i 02
. = 2E9152 W = 285,152 kN, Ans.

K.NEHRU, M.Tech.,(Ph.D)
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Problem 19,4 (). A simply supported beam of length 4 mere is subjected to @ unifarmly
distribeted load of 30 kN o over the whole spar and deflects 16 mni af the centre, Determing
the orippling lbeds wlien this bam is used as o colamin with Me following sonditions
(i) oue andl fived and other end hinged

(#d) hath the ends pin fointed. CAnnamalei University, 1580)

Sol. Givan

Length, £ = 4 m = 4000 mm

I.I'h1l'|:|t‘1l:||}' distributed oad, w = 50 kKNfm = 30,000 e

= H]IZE}I‘? Mimm = 30 M'mm
Deflection at the centre, & = 16 mm.

For & simply supported beam, carring U.D.L, aver the whole span, the dedlection at the
oontre is given by,

5 w1
b e ED
ar 16— HWEM
REF | ET
5 500 400
E'f_wh =
B Hx 56 £
= =

ETor) T 109 = ks I8 I g,
() Crippling loxd when the beam is wsed os o colusin with wie end fieed and ofher end
linged.

The crippling load P for thiz case i terma of actuel longth is given by equatian (19.4] a8
|
P;%.whﬂil=&ﬂu&llﬂmﬂ}-‘lﬂ}nmm

dam E w101
] m".‘- ‘HI. .ItM|
dpan®
(i) Crippling load when botk the ends are pinjointed
This ia given by aguation (18.1) in berms of actual length as

9
P:EﬂI:E: whare | = petual length = 4000 mum
e ekl 225 kM. Ans,
=dll .
BT

K.NEHRU, M.Tech.,(Ph.D)
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Problem 1856, 4 salid round bar 4 m ong and § om in diometer was Sund fo extend
4.6 mm wnder o tensife load of 50 RN, This bor iwsed as o straf with botk eads inged. Determine
the barekiing load for the bar and alas the safe loed teking factor of safety ag 4.0,

Bol. Glven :

Actual length of bar, [ = 4 m = 4000 mn

DHa, of bar, d = § cm

. Area ofbar, A= % o 5% m 095w ond = 620 = 100 mam® = 695 mm?
Extension of har, &1 = 4.6 mn
Toensile load, W= 5 kN = SO0 ¥,

Lix this probbem, the values of Young's modunlus (5) i pob given. Bub ik can be caleubated
feam the given dota.

[Ttmil:hrtd]

) _ Tensile strés Area

SoVoung's medulus, £ = Tenmlo steain | B T Dar
Lenpth of har

) Load AL
[. Stress mﬁandut:m-r?]

w}
n WL EIO0D 4000
. i* -IIE-'_EI'E -HIEI{HIH*H-"MITI:-

I
Sece the sirut is hinged at its both ands,

Effective length, L, = Actual Jength = 4000 mm
Let ' = Cripplmg or bucklmg boad.
Using equation {1951, we get

nt Bl
P= i3
,Hﬂuxm“x%.uﬁ'ulﬂ' Po a0t
_ = - w0 & 10
00K = AL [ G4 mj

= 418000 sy 4180 N, Ans,
Crippling load 4130

Andeafeboad = o o T Ty

= IHMT.S N Ans

K.NEHRU, M.Tech.,(Ph.D)
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Problam 19.12 (o). Lsing Euler's formadn, coleslote the oritical siresses for a series of
struts hoving slenderness rofio of 40, 80, 120, 160 and 200 onder the following corditions :

(£ both erde Ringed ehd
(12} both endy fired,
Take E = 208 & 105 N/ mire?, (Aannamalol University, 19%0)

Eol. Given ;

() Critionl stresses when bodh ends hiimed

Slandarnass ratios, % =40, BO, 120, 180 and 200

The critical stress or crippling stress = miven by equation (15,70
ntx E

il —
%)
where [ = Eifective length
But for both ands hinged, L =1
where | = actal length.

Critical stress

‘Fﬂm;riﬂ.h:ﬁﬁmlmﬂ:hﬂmmﬂu

Critical stro=a (v L=

N alwE _ _I'I'i:lciﬂﬁ-:-:]'_!}!
40® 16

“Tlm%-ﬂﬂ.tmuiﬁ:uluhruh:ﬁ}mm

= JE34.3F MYmm=,  Ars.

2w E gt 208108
i g = B16.185 Nimm®, Ans.

= 120, the critical stress hecomas &8

|

Whean

w2 ans . 100
= - - ’
Tne {2200 14005 Nimm®, Amns,

i
Whin E = 140, the eritleal stress

I B
2w B 2 (15 » 1
lﬁ-n—rz s = 79.0% Nimm?*. Ans,

]
When e 200, the critical stress

n¥ " ;I|.2 x 205 « 107
= T =
apps 400,00

= 50,58 N'mm®., Ans,

K.NEHRU, M.Tech.,(Ph.D)
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L1l HRANKINE'S FOHMULA

In Art. 19.10, we bave beartit that Euler's formula gives correct results only for very long
columns. But whal happens wlen the column is a sherd or the column is nst a very long. On
the basis of resulta of experiments performed by Ranking, he established 2o empirical formaula
which is applicable to all columns whether they are shoet or loag. The empirical formula given
by Rankine i= known &= Rankine's foemuola, which is glven as

1 1 1

— S T ulE

P F ' P !
T o P = Crppling losd by Eankines formila

P = Crushing boad = 0, % A
o, = TIimate crashing skhress
A = Area of erose-section
£, = Crippling load by Euler's formula
2
- ’_jL?f_,inwhth_'Emmm lenggth
For a given oolumn material the crushing etreas o, ia a constant. Henes the crushing
baad P, (which is equal to 0, = A) will also be constant far & given aross-sectional area of the
colummn. In equation it} Pe is constant and heooe valwe of P depends npon the valie of ¥y, But
for a given column material and given crass.sectional area, the velue of Py depends upon the
edfective length of the solwan,
i1} If the column iz o sbort, which means the value of L, is small, then the value of

P, will be large. Hance I',hg.trn'lunufp—::: will be smal] enough and is negligible as eompared to

i 1
- the valhee of .F'i . Meglecting the value of E in equatinm (i), we get
C

1 1
F —* P.: or .F' F_,:.
Hence the crippling load by Rankine's formaula for o short column s approximazely aqual
to prushing load. In Art. 1921 also we have seen that short columns fail das te crushing.

(ifh B the calima {3 long, which means the value of L, is large. Then the value of Fg will

L 1
ha small and the velus of PJ,'— will be large encugh compared with E - Henes [-l'LE"'u'El'ﬂ-BﬁfF:
E
may be peglected in eguation (£
1 L
F - PE or F _-'PE"

Henee the erippling load by Rankine’s formula for long columns is approxcimately equal
1o crippling boad gisven by Euler’s formula.

B Hence the Rankine's Farmuls % - Pi + FL gives satiafaotory results for all lengths of
fa x
_ eclumng, ranging from short e long calumns.
1 1 F.s F
Mow the Rankine formuola is — Lo iETCE

F PR TP F.Pg
Taking reciprocal to both sides, we have
pofofe R
Py =Py 1,50
Fi
(Drviding the numerator and densmipator by Fgh

K.NEHRU, M.Tech.,(Ph.D)
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. - IQE-!-
-_I:F.‘.ﬂ._ ['.' ﬂ_:&_,ﬂ-ﬂ.ﬂdp_ﬂ--?‘—]
1+ 5
{n El
L?

But I = AY where b = least radius of gyration
The above equaticn betoames as

P _+:r,A . a, . A
a, AT &y 5]’
'* FE Ak l*,‘E'[#
i, - A
T (19,9

where a = ;?E and is known ag Rankine's constant.

The equation (19.8) glves erippling load by Rankine's formula. As I;I'H:_I"l'-n:l'i.l'l:i.l:l.bﬂtlml.lll
is empirical formula, the value of 'a’ i3 taken from the reaulis of the experirents and I8 not
ealculated from the valwes of o, and B

The valaes of o and @ for different columng material are given below in Table 19.2.

TAELE 19.2 _
g Mo |  Matsrint g, in Mimm? ;o |
1. Wraaght tran ) 250 E:T}
2 CattTrn 650 i
b so0 L
4. | Timber W ﬁ

Problem 19,13, The .a:n:lnm-u:.i.' and ieternal digmetsr of @ hollow cast rok palemn ore
5 e ond 4 om respectively, IF the fengeh of this colimre (& 3 m and hﬂlhﬂfiﬂtﬂdlm{ﬁmi..
determine the srippling lond asing Ronkine's formule, Take the values of &, = 550 N/ and

! —
El?ﬁ -!.l:l.ﬂdl'ﬂhl.l':li.‘.l‘.l’l:lf'l"ll-l-ﬁil.'-'-

ol Given

External din., I} =5 om

Internal dia.,, o =4 cm
Brea, A*E-:ﬁ*-#::ﬂ.ﬁnm*:mﬁnm=mi-m5:mmi

Moment of Inertia, = i [64 - 44] = 5.7656 & cm#

= 57666 = 10¢ mm®* = 67666= mmt

K.NEHRU, M.Tech.,(Ph.D)
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~. Loast. radias of gyration,

§ STRAER
.#_E-.ﬂ e = #5,625 mm

Length of colamn, [ = 3 m = 300} mm
A= both the ends are fixved,

'
. Bffective length, L, = 5 = HT:'

Crushing stresa, o, = 560 N/mm®
Bankine's constant, a = .

= 1560 s

1600
Let P = Crippling load by Rankine's frmula
Dsing eqaation {1995, wa hava
P @A iy w E2hm
= ] ]
(5] )
& 1600 | 25625
G50 0w 2085x
“gias TN Ans

Problem 1914, A kedlow oplindrical cosé iron columa is 4 m long with both ends fioed,
Daterming tha minimum dicgmeter of the colirma i i has fo varry o safe load of 250 BN with =
Factor of safity of &6, Take the (nfernal diameader ax 0.8 Hmes the exiernal diometer, Toke
0, = 550 N/ mm® and o = ﬁ in Rankine's formula, (AMIE, Winter 1953}

Sal. Given :

T.ﬂh,g'ﬂ'h af enfivmn, f = d s A0 e

End conditions = Both ends fised

Effective length, L_= %- 5 & 2000 mm
Eabe load, = 250 kN
Factor of safedy, =B
Lt Extornal din., =i}
Internnl dia, = 0.6 = I}
Crushing stroess, a_= 550 Nimm?
1
Valua of ' = 7500 in Rankine's formula
Cirippling load Cirippling load
k] fa = -
o Fantor ef aufaty Bafelond . " © 50
Crippling load,  P=§ = 260 = 1260 kN = 1250000 N
Area of eolumn, - E [ — (L R0

'f (D% — 06407 = E « 0.BED7 = 5 x 0,080

Momwnt of Inertiz, [= % LD — (0&D4] = é LE¥ - 0409604

K.NEHRU, M.Tech.,(Ph.D)
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% « (L5604 = [ = (00DERS « @ x [

Bk = A » &2, whore & 18 radius of pyration

4
“E Jﬂmgmﬂm P

o ow 008 = 2
Mew wsing equation (19,9, = I:F'—IA,_
1+u{-&]
&
EA0 = EI:H]E.DE
ar 1250000 = — !" - (v A= 0.00D%)
1+ ]E-l]'[l ﬂﬂ-’Eﬂ
1250000 n 0¥« D?
S60x x w09 = Eﬁﬁ wr BISE= D% 4+ 24414

oF wqmmHmu-ﬂ*mﬂi—EﬂﬂW—mxﬂuu-u
ar DR — B0%E D2 - 1GZI9T00 = 0,

The above equations is a gquadeatic eguation in 07 The salation is
o= Hﬂﬂﬂt.‘r&{ﬁég-rdxlxi_ﬂﬁ:ﬂ'?m

B s

_ B038 o JGI60 + THADGEEDD _ BOZE « 20147

3 -z
aian Eﬂ'l-ﬂ'
= +2 CThe other reot s not posaible}
= 13542.6 mm*

o Brternal diamefer = 1363 mm. Ans.
Internal diamaeter =08 x 1463 = 109 mm. Ans.

K.NEHRU, M.Tech.,(Ph.D)
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Problem 1818 A hallow cast iron column 200 mm outside diometer and TEF mm in-
“de diamaeter, 8 m long has both enda fized. It is subjected fo en wxial compressive lood. Taking

i .
 factor of safety as 8, o_ = 560 Nimmd, a = = | defermine tha 2ol Raakine Laod.

jaon "
(AMIE, Summer 1880)

Sol. Glven -
External dia., L = 300 mm
Internal dia,, o = 16} mm
Langth, [ = & m = 8000 mm
End conditions = Both the ends ars fiked
Crushing stress, o, = 560 Mimm?

Hankine's constant, & =

164040
Safety factor = G
Area ol cross-gection, A = E {DP =~ d%) = E C200 - 1640%)
u E (400400 — 22500} = 13744 mm®
S Ao g i
Moment of inertin, f= 54 (I — gt = e (B00Y - 150
.% {1B0M00000 — BIEZE0000) = GAEIB0H0 mm!
Least radius of gyration, & = E = ﬂlﬂ-‘?T = 2.5 mm
Lt P = Crippling load by Rankine formaula.
A
U=ing aquation (19.9), F= —ﬂ‘j'F
e [ﬂ
vhere L= Effective length = % = " £000 mm
po 58018740
1+ - 1-:.[ ]Ii
(L] G325
THOESA0 TEGEA0 B
={ro58 ~ E.Er'i = 2161577 W = 2161977 kN
Crippling load 2161877
o Bafe lagd = Factor of saf = 3 -Eﬂﬂ.ﬂﬂ'ﬂﬁ-f:.?ﬂ'. H.I.'I.'i.

K.NEHRU, M.Tech.,(Ph.D)
Assistant Professor 19AEB201 Aero Mechanics of Solids



