UNIT-3
QUANTUM PHYSICS
PART-A QUESTION

Level-I
1) Quantum mechanics deals with the behavior of

a) Macroscopic particle b) Microscopic particle c) both a&b d)none of the above

2) In Black body radiation, Wine’s displacement law holds well only for,

a) Longer wavelength b) Shorter Wavelength c) Medium Wavelength d) all
the above

3) In Black body radiation, Rayleigh-Jeans law holds well only for,

a) Longer wavelength b) Shorter Wavelength c) Medium Wavelength  d) all the
above

4) According to wine’s displacement law, AnT=

a)0 b) 1 c¢) Constant d) variable

5) According to wien’s displacement law, the maximum energy is directly proportional to the

a) T® b) T3 c) T® d) T*

6) In Compton shift, When 6=0, AA=?

a)0 b) 0.02424A c) 0.04848A d) 0.0538A

7) In Compton shift, When 6=m/2, AA=?

a)0 b) 0.02424A c) 0.04848A d) 0.0538A



8) In Compton shift, When 6=m, AA=?

a)0 b) 0.02424A c) 0.04848A d) 0.0538A

9) The nature of light radiation is

a) Wave nature b) Particle nature c) both a&b d) none of the above

10) SEM stands for

a) Scanning electron microscope b) scattered electron microscope c) Scanning emission
microscope d) Scattered emission microscope

11) In SEM, the scattered electrons are converted into light signal is done by

a) Scanning coil b) Photomultiplier c) Scintillator d) Magnetic condensing lenses

12) The resolving power of SEM is

a) 10-20 nm b) 20-30nm €)15-25nm d)25-35nm
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13) The expression for Compton shift is

_h q_ - hq _ _h
a)dk= (1~ cosB) b=~ (1~ cos) c)dh %oc d)x AW

14) The scattered wave which is having the same frequency as that of the incident radiation in
Compton Effect is called

a)Modified radiation b)Unmodified radiation c)scattered radiation d) None of the
above

15) The scattered wave which is having the lower frequency as that of the incident radiation in
Compton Effect is called



a) Modified radiation b) Unmodified radiation c) scattered radiation d) none of the
above

16) The scattered wave which is having the same wavelength as that of the incident radiation in
Compton Effect is called

a)Modified radiation b)Unmodified radiation c)scattered radiation d) None of the
above

17) The scattered wave which is having the higher wavelength as that of the incident radiation in
Compton Effect is called

a) Modified radiation b) Unmodified radiation c) scattered radiation d) none of the
above

18) de-Broglie wavelength in terms of kinetic energy

d)none of the above

h h h
a) %TIV b)JZmeV C)\/ZmE

19) de-Broglie wavelength in terms of VVoltage

h
a) %v b) VTR c)\/% d) none of the above

20) For a free particle, the schroedinger one dimensional time independent wave equation
becomes

a) d—"’+—E¢o b)V2yp + Z2Ep =0 ) Vi + ZREyp=0 d) L+ Z2EV]yp=0

21) For a free particle, the schroedinger three dimensional time independent wave equation
becomes

) ZL+ZEy=0 DV + TEPp=0 c) Vip+TEp=0 d)%+27m[E-V]¢=0
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22) Photons are
a) Electrons b) Energetic Particle  c) Energy Waves  d) all the above
23) Compton shift is depends on

a) Wavelength of the incident radiations b) nature of the scattering substance c) Angle of
scattering d) all the above

24) Which particle does not have the particle wave duality?

a) The Proton b) The electron c) The Photon d) none of the above

25) Schroedinger wave equation can be applied for

a) Macroscopic particle b) Microscopic particle c) both a&b d) none of the above

26) flyjza-

a)0 b)1 c)-1 d)both a&b

27) If the various combination of quantum number describes the same Eigen value and same
Eigen function are called

a)Degenerate state b) non-degenerate state c) Normal state d) all the
above

28) If the various combination of quantum number describes the same Eigen value and different
Eigen function are called

a) Degenerate state b) non-degenerate state ¢) Normal state d) all the
above

29) If a particle present within a one dimensional box, then the probability of finding the particle
IS

a)0 b) 1 c) 0.7 d) none of the above



30) In microscopic, resolving power is inversely proportional to

a) Pressure b) Energy ¢) Wavelength d) all the above
PART-B QUESTION

Level-I

1) Explain Planck’s hypothesis (or) what are the postulates of Planck’s quantum theory?

(i) The electrons in the black body are assumed as simple harmonic oscillators.
(ii) The oscillators will not emit energy continuously.
(iii) They emit radiation in terms of quanta’s of magnitude ‘hv’ discreetly.

i.e., E=nhv where n=1,2,3...

2) What is a black body radiation?
A perfect black body is the one which absorbs and also emits the radiations completely.

In practice no body is perfectly black. We have to coat the black colour over the surface to make a black
body.

Black body is said to be a perfect absorber, since it absorbs all the wavelength of the incident
radiation. The black body is a perfect radiator, because it radiates all the wavelength absorbed by it. This
phenomenon is also called black body radiation.

3) Define Rayleigh-jeans law. Give its limitation.

It is defined as “The energy (E) is directly proportional to the absolute temperature and inversely
proportional to the fourth power of the Wavelength”

Limitation .It holds good only for longer wavelength.

4) Define Wien’s displacement law. Give its limitation.

It is defined as “The Product of the wavelength (1,,) of maximum energy emitted and the
absolute temperature (T) is a constant”.

Ay T=Constant



Limitation .It holds good only for shorter wavelength.

5) Define Compton Effect and Compton shift.

When a photon of energy ‘hv’ collides with a scattering element, the scattered beam has two
components, viz one of the same frequency (or) wavelength as that of the incident radiation and the
other has lower frequency (or) higher wavelength compared to incident frequency (or) wavelength. This
effect is called Compton Effect. The change in wavelength is called Compton shift.

6) State the principle of electron microscope.

In an electron microscope a stream of electron are passed through the object and the
electron which carry the information about the object are focused by electric and magnetic lenses (or)
electromagnetic lenses.

7) Mention the application of electron microscope

[i] It has a very wide area of applications in the field of physics, chemistry, medicine and
engineering.

[ii]It is used to determine the complicated structure of crystals.

[iii]lt is used to determine the structure of micro organisms such as virus, bacteria, etc

8) State the principle of SEM?

Electron beam is made to fall on the various portions of the specimen by the scanning coils
for scanning the sample. From the secondary electron or back scattered electrons or X-rays that are
produced by incoming incident electrons are used to get the information about the specimen’s surface,
topography, composition etc

9) Mention the application of Scanning electron microscope

[i] This microscope also has wide range of applications in various fields of physics, chemistry,
biology, industry and engineering etc.

[ii]lt is used to examine the structure of specimens in a three dimensional view.
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10) What is Compton Wavelength? Give its value.

The shift in wavelength corresponding to the scattering angle of 90° is called Compton
wavelength.

We know Compton shift AA = % (1 — cosB)
0

When 68=90°; cos6=0

_ 6.625X1073*
(9.11X10731)X(3X108)

AN=0.02424A
11) State de-Broglie’s hypothesis (or) Explain the concept of wave nature

The light exhibits the dual nature (i.e) it can behave both as a particle and the wave debroglie
suggested that an electron, which is particle can also behave as a wave and exhibits the dual nature.

Thus the waves associated with a material particle are called as matter waves.

If v is the velocity and m is the mass of the particle then

de-Broglie wavelength 1 = L
mv

12) What is the physical significance of a wave function?

[i] The probability of finding a particle in space at any given instant of time is characterized by a
function W(x.y,z), called wave function.

[ii] It relates the particle and the wave statistically.
[iii] It gives the information about the particle behavior.
[iv]It is a complex quantity.

[v] |¥|? represents the probability density of the particle, which is real and positive.

13) Write down the schroedinger wave equation and give any two application of it.
[i] schroedinger time dependent wave equation, given by
EyY=Hy
Where E= Total energy of the particle

H=Hamiltonian operator



1= Wave function
[ii] schroedinger time independent wave equation , given by
A21p+27m[E-v]l/J=0
Where E= Total energy of the particle
V=Potential energy of the particle
m =Mass of the particle

Application
[i] It is used to find the electron in the metal.

[ii]lt is used to find the energy level of an electron in an infinite deep potential well.

14) What is meant by degenerate and non-degenerate state?
Degenerate state

For various combinations of quantum numbers if we get same Eigen value but different
Eigen function, then it is called degenerate state.

Non- degenerate state

For various combinations of quantum numbers if we get same Eigen value but same Eigen function,
then it is called Non -degenerate state.
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15) What is meant by photon? Give any two properties.

Photons are discrete energy values in the form of small quanta’s of definite frequency
(or) wavelength.
Properties

[i] They do not have any charge and they will not ionize.

[ii] The energy and momentum of the photon is given by

E=hv and p=mc

Where v=frequency h=Planck’s constant

m- Mass of photon  c=velocity of photon



16) What is meant by wave function?

Wave function is a variable quantity that is associated with a moving particle at any position
(x.y, z) and at any time‘t’. It relates the probability of finding the particle at that point at that time.

17) Write down the one dimensional schroedinger time independent equation and write the same for
a free particle.

The one dimensional schroedinger time independent equation is given by

2
SL + ZEvyp=0

dx?

For a free particle, the potential energy is zero. Therefore it becomes

>y  2m_,
a2 T V=0

18) Define normalisation process and write down the normalised wave function for an electron in a
one dimensional potential well of length ‘a’ metres

Normalisation is the process by which the probability of finding a particle inside any
potential well can be done.

For a one dimensional potential well of length ‘a’ metre the normalised wave function is
given by

19) Define Eigen value and Eigen function.
Eigen value is defined as energy of the particle (E}, ).

Eigen function is defined as wave function of the particle (y,, ).

20) Define Magnifying power

Angle subtended by the final image at eye(3)

Magmfymg power (M) =Angle subtented by the object at eye kept at the near point(a)



QUANTUM PHYSICS
PART —-C QUESTION
Level-I

With the concept of quantum theory of black body radiation derive an expression for energy
distribution and use it to prove wine’s displacement law and Rayleigh —Jeans law



Assumptions

Planck derived an expression for the energy distribution, with the following
assumptions. '

@) A black body radiator contains electrons (or) so called simple harmonic
oscillators, which are capable of vibrating with all possible frequencies.

(ii) The frequency of radiation emitted by an oscﬂlator is the same as that
of the frequency of 1ts vibration.

(iii) The oscﬂlators (eleclrons) radiate energy in a dnscrete manner and not
in a continuous manner.

(iv) The oscillators exchanges energy in the form of either absorption or
emission within the surroundings interms of quanta of magnitude ‘AV’.
: (ie,) E=nhv
where n=0,1,2,3 ...
This implies that the exchange of energy will not take place continuously
_but are limited to a dicrete set of values say 0,hv, 2hv, 3hv, 4hv, ....n hv.

Planck's Radiation Law

To derive the Planck’s radiation law, let us consider ‘N° Number of
oscillators with their total energy as Ep

Then, the average energy of an oscillator is given by

. (1)

If No,N;, Ny, N, ... N, are the oscillators of emergy O, E,2E,3E...7E
rwpectiv’ely then we can write ’

(1) The total number of oscﬂlators N= N0+N +N,+N;+. ..+N, (2)

and (ii) Total energy of oscillators Er= 0N0+EN1+2EN2+3B\’3+ .+TEN, ,,,(3)'



According to Maxwell’s dlstnbutnon foxmula, the number of oscﬂlator havmg
an energy rE is given by

s

. @

Where Kp is called Boltzmann constant and r=0,1,2,3 ...

- For various of r, ie., r=0,1,2...r, the number of oscillators
Ny, N;,N,, N,, ... N, can be got as follows: ’

() Forr=0 ; Ny=N,é

(i) Forr=1 ; N,=N,e lE/K;
(i) Forr=2 ; N,=N,e %%
(iv) Forr=3 ; N, =N, e SE/K,T
‘Similarly-‘ for r=r ; N,= N;, o~ /KT

. 'The total number of oscillators can be got by substituting the values of
N, NI,N N, ... N, in equation (2)

5 N=N0e A e L N
) N=Ny[1+& 7l + KT 4 /G 4 BT ()

We know, 1 +x+x,2+x"+,., =

~. Therefore we can write equation (5)

The total number of oscillators .. (6)

Similaﬂy by substituting the values of Ny N;,'N,,N; ... N, in equation (3),
the total energy can be written as '

Er=0Ng"+EN, e-FJK,T+2ENoe'M”T+3EN0 T S ok rE Ny~ %7
E;=N;[0+Ee ¥574 2E ¢ KT 4, EEE T oy rEe AT

Er=NyEe "5 [0+ 1+ 267 Z5T 4 3¢ 2Kl 4 4 pe™ 0~ DEKS) )



. Energy density (E,dv) (or) _ No. of oscillators per unit volume
Total energy per unit volume [ X Average cnergy of an oscillator

ie., E,dv=NE .. (12)

Substituting equations (10) and (11) in equation (12) we get

g v? | hv
R o e

.. (14)

Equation (14) represents the Planck’s radiation law interms of frequency.

Planck's radiation law interms of wavelength ()

We know v=%

Wien's Displacement Law
We know Wien's displacement law holds good only for shorter wavelengths.

(e.) If T is less, 7 will be greater - "/l >> 1

Since ** 7 55 1, we can write T — | = HAKT
- Equation (1) becomes
= —3khe
E*"ls((bdu',r)

(or) E, = Sxhch e

where C, and C, are constants given by C‘=8WMC2=%

Equation (8) represents the Wien's displacement law.

Thus we got Wiens displacement law from Planck’s radiation law wsing
Quantum theory of black body radiation.

Rayleigh-Jean's law
We know Rayleigh-Jeans law holds good only for longer wavelength.

ie, If T is greater; /T will be lesser.

AK,T he 1 he Y
‘/ e —— - -— | —
We know " _.l+1 +2[ ]4-



2
Fawgevﬂuuofﬂﬂnvdw[—hc-]+...wmbcvcrymnmm

AK5T
the higher terms can be neglected.

o AT g 4

(or) E,=

Thus we have deduced Rayleigh-Jeans law from the Planck’s radiation law
using Quantum theory of black body radiation.



2) What are matter waves? Explain de-Broglie waves.

de- lie concept of Dual Mature _
Br'l?liuﬂm ismﬂtﬂlﬂﬂmmgﬂlmmﬂﬂuﬂuﬂﬁ}.ﬁﬂgﬂ

exhibits the dual nature (i.e..) it can behaves both as a wave (Interference, diffraction

phenomenon) and as a particle (Compton effect, photo-electric effect eic).

Elmelhenmlwﬁs}-nm%m]ﬂdlmﬂsm-ﬂmﬂli:mwmﬂ
an electron (o) any other material particle must exhibit wave like properties in
addition o particle nature,

The waves associated with a material particle are called as Matter waves
*'%'&wﬁmmmwaMleﬁdsmmﬂwﬂ
the photon is given by E=mc’. e (1)
where m = Mass of the particle

¢ =+ Velocity of hight

Considering the photon as a wave, the total energy is given by Emhv.. (2)
where h — Planck’s constant

v =+ Frequency of radiation

From equations (1) and (2) we can write E=mc’ = hv e (3)

We know momentum = mass X velocity

| Other forms of de-Broglie Wavelength
(i) de-Broglie wavelength interms of Energy
We know kinetic energy E=—;-mv2
~ Multiplying by ‘m’ on both sides we get

Em=%mv

mat mv=\2Em
pam 2

.. (6)

(ii) de-Broglie W&vélengfh intferms of voltage

If a charged particle of charge ‘e’ is accelerated through a potential difference ‘V*
Then the kinetic energy of the particle =%mv2 D

. (8)

Also we know energy =eV
Equating equations (7) and (8) we get

f N
2mv =eV .



Multiplying by ‘m’ on both sides we get )
m?*v? =2meV
(or) mv =~N2meV

.- (9
Substituting eguation (9) in (5), we get

... (10

(iii) de-Broglie wavelength interms of Temperature

When a particle like neutron is in thermal equilibrum at temperature 7, then
they possess Maxwell distribution of velocities.

.. Their kinetic energy Ek=%mvfms

... (1)
where v_ . is the Root mean square velocity of the particle.
Also, we know Energy =3 KT’ . (12)
where Kjp is the Boltzmann constant.
.. Equating equations (11) and (12) we get
1 3
S>mv: =3 KgT
(or) m?*v? =3m KgT
mv = N3mK,T
... (13)

Level-I1l



3) Deduce schroedinger’s time independent and time dependent equation

Schroedinger describes the wave nature of a particle in mathematical form
and is known a: Schroedinger wave egquation. There are two types of wave

cquations, viz
(i) Time dependent wave equation.
(i) Time independent wave equalion.

Time dependent wave equation

According to classical mechanics, if ‘x’ is the position of the particle moving
with the velocity ‘v’, then the displacement of the particle at any time ‘7’ is given by
y=A e—im(t—xN)
where ® is the Angular frequency of the particle.

Similarly, in Quanturmn Mechanics the wave function W (x, ¥, z, ) represents
the position (x, y, z) of a moving particle at any time ‘2’ and is given by

W (2 O =A & BT e (D
We know angular frequency o = 27tv
Equation (1) becomes

—Zﬂ[vt- E)
Yxy.zn=Ae e )
We know E=hv (on)v="=2 (3D
Also, if ‘v’ is the velocity of the particle behaving as a wave, then the
4 v 1
frequency v =x (or) ;=x . @

Substituting equations (3) and (4) in equation (2), we get,

M E
Wy z=A e‘z’“(r—i e (5

If ‘p’ is the momentum of the particle, then the de-Broglie wavelength is
< h h
given by A = mv = p ... (6)
Substituting equation (6) in (5) we get
— 27 ( Er _ px )
WYy, zt)=Ae S

—ZTﬁ(Et —px)
(or) ¥ (x,y,z,0)=Ae

-.(7)

Since 71 =2’:c, we can write

ox I3

—i .
L S Rl _zzJ
Differentiating once again partially with respect to ‘x> we get



¥ A%"w-m(fﬁ]

= Ae
2 o
=L @ -po) :
Since ¥ (x, y, z, f) = Ae and i“=-1, we can write
| ¥ _ -
B - ‘P X, Y, Z, t)- ~
ek i ( "
(or) (8)
Differentiating equation (7) partially with respeCt to ‘t’, we get
C
o¥ _, 7 E-P(-iE
5 =Ae 7
. | - E-pn)
(on) %%‘f«:wx,y,z, HE [ ¥erng=aet ]
or . ..(9)

A particle' can behave as a wave only under motion. So, it should be

accelerated by a potential field. Therefore, the total energy (E) of the particle is
equal to the sum of its potential energy (V) and kinetic energy.

~.E;V+%m¢

m*v?

m

(or) E=V+

ST

2 - :
- (or) E,=V+§'71 [." p=mv)

2
EVY=V¥+—V¥
(o) | " om .. (10)

Substituting pquaﬁons (8) and (9) in equation (10), we get,



o¥ n* o*¥
Ll WPER - - L —
71 o 14 T

(or) .(11)

Equation (11) represents the ome dimensional (along ‘x’ direction)
Schroedinger time dependent equation. It is called time dependent wave equation,
because here the wave function ‘¥ (, y, z, f) depends both on posmon (x, y, z) and
time (7).

Similarly, the 3-dimensional Schroedinger time dependent wave equation
can be written as

. (12)
*
where, V2= 2 ay2+ = z2
Equation (12) can also be written as
' ..(13)

where E is the energy operator given by E = m-(% and

H is called Hamiltonian Operator, given by H = V-2£2rh_ V2

8.13 SCHROEDINGER TIME INDEPENDENT WAVE EQUATION
It is convenient to use the time independent wave equation rather than using
time dependent wave equation, because of the following reason.
In Schroedinger time dependent wave equation the wave function “I”,

depends on time, but in Schroedinger time independent wave function ¥ does not
depend on time and hence it has many applications.

We know that time dependent wave functior:
—-(Et -p2)
¥ (x,y,zt)=Ae "

Splitting the RHS of this equation into two parts, viz, (i) Time dependent
factor and (ii) Time independent factor, we get



(e) Yyzh=Ae * . e*
_IEt
(or) Y(x,y,z,)=AWye L4 e L)
where ¥ represents the time independent wave function (i.e.,) \|1=e7’

Differentiating equation (1) partially with respect to ‘¢ we get
iEt
7k S >
o =Avye (_h ) | - (2)

Differentiating equation (1) partially with respect to ‘x’ we get,
—iEs

¥ _, ) oy

ox ox

Differentiating once again partially with respect to ‘x’ we get
—iEt 2

Y _, H oY 3)
A aea
o o
- We know the Schroedinger time dependent wave equation (one dimensional)
is
o _ Y @
M o=V " 2m ox?

We can get the Schroedinger time dependent wave equation, just by
substituting equations (1), (2) and (3), which has relation between the time dependent

wave function (¥) and time independent wave function (y), in equation (4).

Substituting equations (1), (2) and (3) in equation (4) we get

—ikEt - ikt tEt
| = [ —iE \_ L Py
in Aye ( 7 ]—VA\Ve G Ae 32

2
(or) ﬂi( 7 J\V V\V—;m 3—1\2‘{

2



) By-vy=3-2F

(o) %=:§2’3[Ew—vw

2 ,
o0 $¥+2Ey-wi=0

(or) e (5)

Equation (5) represents the one dimensional (x- direction) Schroedinger time
independent wave equation, because, in this equation the wave funtion ¥ is
independent of time. Similarly the three dimensional Schroedinger time
independent wave equation can be written as

¢ F
+—+
o d* 97

where V2=




4) Explain the construction and working of an electron microscope. Mention
their merits and application

It is an instrument that uses highly energetic electron beam to examine a
very small specimen.

Principle: The high energy electron beam is allowed to fall over the specimen and
image formed due to the transmitted electron beam from the specimen is
examined.

Construction

Essential parts of the electron microscope

i)  An electron source

ii) Electro magnetic lenses
iii) Metal aperture

iv) Object holder

v) Screen

Electron gun

- Anode
- Metal aperture

J
|

- Condensing lens
- Vacuum chamber

# — P Object

j P Object lens

I \/ L_—'P’ Projector lens

jlr, K - Eye piece
/
/

Fluorescent screen

Fig.3.13 Fig. 3.14



Description

Electron gun is made of tungsten filament. Electrons which are emitted due
to thermionic emission by the filament are accelerated by a large potential applied
to the electrodes of the electron gun.

Electro magnetic lenses are made of coils enclosed inside the iron shield
which has a gap at the middle as shown in the Fig. 3.13. If the gaps of the two
electromagnetic lenses are faced with each other uniform magnetic field is
produced. Similarly if the gaps of the two electromagnetic lenses are slightly
disturbed non-uniform magnetic field is produced. Electron beam can be focused
by the electromagnetic lens.

In this system we have three magnetic lenses.

1) Condensing lens which is used to condense the electron beam.
ii) Objective lens which is used to resolve the structures of the object.
iii) Projector lens which is used to enlarge the object.

Metal aperture is used to get a narrow beam and object holder holds the
object. Enlarged image of the object is seen through the fluorescent screen.

The whole arrangement is kept inside a vacuum chamber as shown in the
Fig. 3. 14

Workmg

Streams of electrons from the electron gun are accelerated by the positive
anode potential. The electron beam is then confined to a narrow beam by the metal
aperture (slit) and the condensing lens. Then the electron beam is passed through
the object.

Eye piece
Condensmg lens L]
R ;
Electronmesedgy. - | _ > 7 _____ | TS
&un | A :
Apefis ! ¥ Object || . Ay
Object lens ScreenS;  Projectorlens [ Fluorescent

screen

Fig. 3.15

An interaction between the electron beam and the object occurs and the
transmitted electron beam carries the image of the object. Then it is passed
through the magnifying objective lens as shown in Fig. 3.15. This lens magnifies



the images of the object more than 100 times. Then the image is made to fall on
the screen S; and the electron beam is passed through the magnifying projector
lens. It also magnifies the image of the object again more than 10 times. Finally
the image of the object is made to fall on a fluorescent screen. The image formed
~on the fluorescent screen is viewed through an optical lens which is attached with
the eyepiece. It also magnifies the image 10 times. Therefore total magnification in
the order of more than 10° times is achieved.

Merits
1)  The magnification is 100000X.

i1) Focal length of the microscope can be varied.

Applications
i) Itis used to determine the complicated structure of the crystal.
i) It is used to study the disease due to virus and bacteria.

iii) It is used to study and analysis of colloidal particles.
iv) Itisusedto study the composition of papers, paints etc.



5) Explain the Principle, construction and working of a Scanning electron
microscope. Mention their merits and application

Principle

Electron beam is made to fall on the various portions of the specimen by
the scanning coils for scanning the sample. From the secondary electrons or back
scattered electrons or x-rays that are produced by the incoming incident electrons
are used to get the information about the specimen’s surface, topography,
composition etc.

Construction

The schematic diagram of the SEM is shown in the Fig. 3.16. It consists of
an electron gun to produce high energy electron beam. Metal aperture is used to
get a narrow beam and a magnetic condensing lenses are used to condense the
clectron beam. A beam deflector is placed between magnetic condensing lens and
the magnetic objective lens. A set of scanning coils are placed inside the objective
lens to scan the sample. The electron detector (scintillator) is used to collect the
secondary electrons and can be converted into electrical signals by the detector
(photomultiplier tube). These signals containing information about the scanned
sample are then passed into the CRO. Finally the image is viewed on the CRO
screen (image viewing screen).

Working

Streams of electrons are produced by the electron gun. These electrons are
accelerated by the anode. These accelerated electron beams are confined to a
narrow beam by the metal aperture and the first magnetic condensing lens. It is
then passed through the second condenser lens to get thin, light coherent electron
beam. Beam deflector effectively focuses the electron beam on the desired portion
of the specimen. Again it is passed through the objective lens which focuses the
coherent eléctron beam on the object. When electron beam strikes the specimen
the specimen is scanned and the specimen-beam interactions can take place as
shown in the Fig. 3.17.

In SEM the secondary electrons from the specimen are selectively attracted
towards the detector. Detector consists of a positive potential at the front and
scintillating coating at the back. Hence the secondary electrons are attracted
towards the positive potential and finally converted into light pulses by the
scintillating coating.
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6) Define Compton Effect, Compton shift and Compton wavelength; also explain how it can be
verified experimentally?



As:

with

Compton effect: When a beam of momochromaric radiation such as
X-rays, Y= rays etc, of high frequency is allowed to fall on a fine scatterer, the
beam is scattered into iwo components iz

(i} One component having the same frequency (or) wavelength as that of
the incident radiation, so called unmodified radiation.

and (i) The other compoment having lower frequency ({or) higher
wavelength compared to incident radiation, so called modified radiation.

This effect of scattering is called Compion effect.

Compton Shift: When a photon of energy ‘hv' collides with an electron
of a scatterer at rest, the photon gives its energy to the electron. Therefore the
scattered photon will have lesser energy (or) lower frequency (or) higher
wavelength compared to the wavelength of incident photon. Since the electron gains
energy. it recoils with the velocity *v'. Ihis effect is called Compion effect and
the shift in wavelength is called Compton shift.

Thus as a result of compton scattering, we get (i) Unmodified radiations
(ii) Modified radiations and (iii) a recoil electron.

THEORY OF COMPTON EFFECT

Principle
In Compton scattering the collision between a photon and an electron is

considered. Then by applying the laws of conservation of energy and momentum,
the expression for compton wavelength is derived

We know /5T = 1 4

1?,1”’%[ 1:; l * o



Y,
During the collision process, a part 1

of energy is given to the electron, which ; e
inturn increases the kinetic energy of the ) o
electron and hence it recoils at an angle E,,m,,:"”'
of ¢ as shown in Fig. 8.4. The scattered
photon moves with an energy hAv’ e g
(lesser than hAv), at an angle 0 with photon
respect to the original direction. Eleciron at
resi — oil
Let us find the energy and E=m,C? _ ’m“’:
momentum components before and after Fig. 8.4 BmC
collision process.
Energy before collision
(i) Energy of the incident photon = Av.
(ii) Energy of the electron at rest =m, ¢’
where m,, is the rest mass energy of the electron. .
. Total Energy before Collision =hv +myc? L
Energy after collision |
(i) Energy of the scattered photon = hv’
- (ii) Energy of the recoil electron = mc?
where m is the mass of the electron moving with velocity ‘v’
- Total energy after -collision =hVv’+mc . (2)
We know accordmg to the law of conservation of energy -
Total energy before colhslon = Total energy after collision
. Equation (1) = Equaﬁon_ 2) |
s £3)

X-Component of Momentum Before Collision

(i) X-component momentum of the mcxdent Photon -—ﬁ-—

c
(ii) X-component momentum of the electron at rest =0

. Total X-component of momentum before Collision = h_cv_

)



Component of momentum After collision

X- | ' M
(i) From Fig. 8.5, In AOAE, sin@=—>"—
hv /c
the s v - | - " ke
from & -Component momentum of the scattered photon = . sin
. : s | |
(i) From fig 8. 5 In A OCD, sin ¢ = i tered
mv , . on
. Y- Component momentum of the recoil electron =—mv sin ¢

4

Total Y-Component of momentum after collision = hv_ sine —mvsing @)

the sc According to the law of conservation of momentum, —x>
Equaﬁon (7) = Equation (8) '
the  re (3)
from = From equation (6), we can. write.
BN BV = cos 0 =mv cosp
c ¢

(or) mevcosd =h(v—v’cosB)

From equatlon (9) we can write ,

the re » | mcvsing=hv’sin® . (11
Squaring and adding Equation (10) and (11) we get

m? ¢* v* (cos?¢ + sin?¢) = K% [VE =2V v’ cos 0 + (V Y2 cos? 0] + K (v)?sin2@ 4’(5)

Since cos? ¢ + sin’¢ ==‘1 and hz(v "2 [cos 29 + sin?0] = k2 (v )% we get
(or) m c2v2-h2[v —2VvVv’cos0+(V)] » e KL
From equation (3), we can write '

mc? —moc +h(v v’)

(6
Squaring on both sides we- get ©) .
Y-cot mzc4—m0c +2hmyc (V-v-v’)__,-!-h2 [v2-7—2_vv’+(v’)2];”7 s (A3

~ Subtracting equation (12) from equation (13), we get

v v & v g-\,unqluuclu UJ mumeciiam UCJUI’ € C0ulSlOﬂ =9V (7)



Equating equations (16) and (14), we can write
m?,c‘-mgc‘+2hmoc’(v-\r)-2h’vv'(l-oosO)
(or) zhmoc’(v-v')=2h‘vv'u-ooso)

(0r) "—v}i-ﬁu ~cos 0)
(or) ﬁ:-ﬁ;sn—:gu-mo)
(o0) \%-;’;=$(1 ~cos0)
Multiplying both sides by ‘c’, we get
%-f'-ﬁ—(l—oose) w (17)

Since A-fmxafwemwnmm(ma :

h
A =Am=——(] - 0
M( cos 0)

or) Change in wavelength e (18)




Equation (18) represents the shift in wavelength, i.e., Compton Shift which is
independent of the incident radiation as well as the nature of the scattering substance.

Thus the shift in wavelength (or) Compton Shift purely depends on the angle
of scattering. : : ' ,

SPECIAL CASES |
Case (i) When 6=0; cos0=1

.. Equation (18) becomes

This implies that at © =0 the scatteriné is absent and the outcoming radiation
has the same wavelength (or) frequency as that of the incident radiation. Thus we
get the output as a single peak. [Refer fig. 8. 7]

Case (ii) When 0 =90° cos0=0

. _ . h
| Equation (18) .bgcomes A 7\,————'% =k
Substituting the values of A, m, and ¢ we get

6.625 x 10~ #

Al=

T (9.11 x 1073 (3% 108

This wavelength is called COMPTON WAVELENGTH, which has a good
agreement with the experimental results. [Refer fig. 8.7] '

- Case (iii) When 0 =180°,cos0=—1

h
m,c

Equation (18) becomes AA= {(1-(=1]
(or) o : ==

Substituting tﬁe values of h, m, ‘and c we get

Thus for ©=180° the shift in wavelength is found to be maximum.[Refer
fig. 8.7] o

. When the angle of scattering (0) varies from O to 180°, the wavelength

shifts from A to A+ 2
: 0




EXPERIMENTAL VERIFICATION OF COMPTON EFFECT
Principle

When a photon of energy ‘hv' collides with a scattering element, the scatterec
beam has two components, viz., one of the same Jrequency (or) wavelength as tha
of the incident radiation and the other has lower frequency (or) higher wavelengt}
compared lo incident frequency (or) wavelength. This effect is called Compton effec,
and the shift in wavelength is called Compton shift.

Construction

It consists of an X-ray tube for producing X-rays. A small block of carbon
C (scattering element) is mounted on a circular table as shown in Fig. 8.6.

A Bragg's spectrometer e
(B,) is allowed to freely swing in
an arc about the scattering element H ﬂ
to catch the scattered photons. Slits Xerny
S5, and 5, helps to focus the X-rays \ g
onto the scattering element.

Working

X-rays of monochromatic i '"""“m =
wavelength “A’ is produced from | (5 SESTEVS Salm .
an X-ray tube and is made to pass | = COmeeP! €an be viewed in the CD.
&mm&wsutsslmdsz,mx—mysmmtu element.
The scattered X-rays are received with the help of the Bragg's spectrometer and
the scattered wavelength is measured.

ﬂmu[mnmmrqﬂmdfmvadmmmngmﬂﬁmdmemm
wavehngtﬁmmeuumd.hﬁpaimﬂlr&&ultsmpluﬂaduﬂmminﬁg. 8.7.

_'_,r"

I
i
I
h_-'

AFWH'“' A For 8 =45°

sl__A_El _A

£ E I : '

{ 1\
| A=
[ooh
Wavelength (1)

Fig. 8.7

In this figure when the scatiering angle 8 =0°, the scattered radiation peak
vill be the same as that of the incident radiation Peak ‘A’ Now, when the scattering



angle is increased, for one incident radiation peak A of wavelength (A) we get
two scattered peaks A and B. Here the peak ‘A’ is found to be of same wavelength
as that of the incident wavelength and the peak ‘B’ is of greater wavelength than
the incident radiation.

- The shift in wavelength (or) difference in wavelength (AA) of the two scattered
‘beams is found to increase with respect to the increase in scattenng angle.

At §=90°, the A} is found to be 0.0236= 002424, which has good
agreement  with the theoretical results. Hence this wavelength is called
Compion wavelength and the shift in wavelength is called Compton shift.

7) List out the physical significance of wave function. Explain the application
of Schroedinger wave equation to one dimensional potential well.



PHYSICAL SIGNIFICANCE OF A WAVE FUNCTION [Y¥]
Wave function: It is the variable quantity that is associated with a moving particle
at any position (x, y, z) and at any time ‘t' and it relates the probability of finding
the particle at that point and at that time.

» It relates the particle and the wave statistically

(e) Y(xyz)=Ae @t

o

(or) Y=wye

» Wave function gives the information about the particle behaviour.
» Wis a complex quantity and individually it does not have any meaning.

» IWP=Y¥"V¥ is real and positive, it has physical meaning. This concept is
similar to light In light, amplitude may be positive (or) negative but the
Intensity, which is the square of amplitude is real and is measurable.

» |'¥ P represents the probability density (or) probability of finding the particle
per unit volume.
» For a given volume dt, the probability of finding the particle is given by

Probability (P) = [[ 1 P &t
where dt=dx- dy - ds.
» The probability will have any value between zero to one. (i.e.,)

(i) If P=0 then there is no chance for finding the particle (i.e.,) there is
no particle, within the given'limits.

(ii) If P=1 then there is 100% chance for finding the particle (i.c.,) the
particle is definitely present, within the given limits.

(iif) If P=0.7, then there is 70% chance for finding the particle and 30%
there is no chance for finding the particle, within the given limits.

Example: If a particle is definitely present within a one dimensional box (x-direction)
of length ‘I, then the probability of finding the particle can be written as

i
P=[1¥Rdx=1
0

The application of Schrodinger wave equation to one dimensional potential
well.



Let us consider a particle (electron) of
mass ‘m’ moving along x-axis, enclosed in a
one dimensional potential box as shown in
fig. 8.8. -

N Y=

» ‘Since the walls are of infinite potential
the particle does not penetrate out from the
box.

3 x-’.{.-..) X axis

Also, the particle is confined between Length of the Box

the length ‘I’ of the box and has elastic
collisions with the walls. Therefore, the Fig. 8.8
potential energy of the electron inside the box
is constant and can be taken as zero for

simplicity.

The interactive animation of this
- eoncept can be viewed in the CD.

. We can say that Outside the box and on the wall of the box, the potential
energy V of the electron is o,

Inszde the box the potential energy (V) of the electron is zero. :

In other words we can write the boundary conditions as

Since the particle cannot exist outside the box the wave function y =0 when
02x21.

To find the wave function of the particle within the box of length ‘I’, let
us consider the schroedinger one dimensional time independent wave equation (i.e.,)

d7'\|1 2m
E-V
—te hz[ ]\I’r 0

Since the potential energy insidé the box is zero [(i.e) V=0], the particle
has kinetic energy alone and thus it is named as a free particle (or) free electron.



. For a free particle (electron), the Schroedinger wave equation is given

by
dv 2m .
F’F?—E\V—-O
(or) | .%+kzw=0 . (D)
where k2=% - (2)

Equation (1) is a second order mffcrennal equation, therefore, it should have
solution with two arbitrary constants. :

. The solution for equation (1) is given by

] -

where A and B are called as aﬂntrary constants, wlnch can be found by applying
the boundary conditions.

(i.e.,) V(x)=c when x=0 andx=1

Boundary condition (i) at x=0, potentia energy V=eco, .. There is no
chance for finding the particle at the walls of the box, .. yx)=0

*. Equation (3) becomes
0=Asin0+Bcos(
0=0+B(1)
S B=0

- Boundary condition (ii) at x=/, potential energy V=es, .. There is no
chance for finding the particle at the walls of the box, .. ¥ (x)=0

. Equation (3) becomes
O=Asinkl + B cos ki

Since B=0 (from 1st Boundary condition), we have



Since A#0; sinkl=0

We know sinnan=0
Comparing these two equations, we can write kI =nn
where n is an integer.

(o) k="F @

Substituting the value of Bandk in equation (3) we can write the wave
function associated with the free electron confined in a one dimensional box as

..(5)
Energy of the particle (Electron)
We know from equation (2)
_mE
w
- 2mE . . _h2= _i_
(W/AT) ' 4r?
o) =T nE - ©
Squaring equation (4) we get
2,2
=112_ e (1)
Equating equation (6) and equation (7), we can write
8’mE _ n’n’
P
..(8)

. From equations (8) and (5) we can say that, for each value of ‘n’, there
is an energy level and the corresponding wave function.

Thus we can say that, each value of E, is known as Eigen value and the
corresponding value of ¥, is called as Eigen function.



Energy levels of an electron

For various values of ‘n’ we get various energy - values of the electron. The
lowest energy value (or) ground State energy value can be got by substituting

=1 in equation (8)

2
-~ When n=1 weget E, =§—h7 |
, m

Similarly we can get the other energyr'v_alues

, 2
(ie.,) When n=2 weget E, —-84—hl—- = 4E,
m

oR2 . .
Whenn=3 weget E;=—s = 9E;
8ml

‘ 2
Whenn=4 weget E,= 10 ’;2
m

=16 E,

. In general we can write the energy eigen function as

It is found from the energy levels
E\,E, E, etc the energy levels of an

electron are Discrete.

“This is the great success which is
achieved in quantum mechanics than
classical mechanics, in which the energy
levels are found to be continuous.

The various energy. eigen - values
and their corresponding eigen functions of
‘an electron enclosed in a one dimensional
box is as shown in fig. 8.9. Thus we have
discrete energy values.

..(9)



Normalisation of the wave function
Normalisation: It is the process by which the probability (P) of finding the
particle (electron) inside the box can be done,

| We know ﬂiat the total probability (P) is equal to 1 means then there is a
particle inside the box.

. For a one dimensional potential box of length ', the probability

I
pP= I lyPdc=1 (Smcethcparﬂclelspresentmsmethe well between the ) (10)

- lengthOtOI the limits are chosen between 0 to 1

Substituting equation (5) in equation (10), we get

I
sz Azsngdx:l
0

! .
o A [ l-cos22n1tx/l] dr=1
0

Az _Jg__lstnm/l] =1
0

A2 | 1sin2nn 1
(11)

~ We know sinnn =0 .. sin 2n7 is also =0



. Equation (11) can be written as

A%l _
5=
(or) A? =%
] V=
(o)  A=q[3 sy
ne3
Substituting the value of ‘A’ in equation 3
(%), !
The normalised wave function can be =l .
. ) oy 28
written as K — nx:xi___

Fig. 8.10

The normalised wave function and their
energy values are as shown in fig. 8.10.

M

8.16 THREE DIMENSIONAL POTENTIAL BOX

The solution of one-dimensional
potential box can be extended for a three
dimensional potential box. In a three y
dimensional potential box, the particle VN
(electron) can move in any direction in space. | jy=e
Therefore instead of one quantum number
‘n’, we have to use three quantum number o
n,n,andnm,  corresponding  the  three T
co-ordinate axis (ie) x, y andz respectively. ‘ J

~ If a, b, c are the length of the box s
as shown in figure 8.11 along x, y andz axis,
then the ‘ _—

Fig:§.11

The energy of the particle =E, +E,+E, -



(1)

Energy Eigen value is

The corresponding normalized wave function of an electron in a cubical box
can be written as

)

From equations (1) and (2) we can note that, several combinations of the
three quantum numbers (n,, n,, andn,) leads to different energy eigen values and
eigen functions.






