\square
\square
I
\square
SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)
COIMBATORE-641 035

B.E/B.Tech- INTERNAL ASSESSMENT - II
 Department of Mathematics
 Academic year 2023-24 (ODD)/ FIFTH SEMESTER
 19MAT301 - DISCRETE MATHEMATICS
 (Common to CSE, IT \& AIML)
 (REGULATION 2019)

MAXIMUM MARKS: 50
ANSWER ALL OUESTIONS
PART A - ($5 \times 2=10$ Marks $)$

1. Form the recurrence relation for the sequence $S(n)=6(-5)^{n}, n \geq 0$

A survey of 500 from a school produced the following information. 200 play
2. volley ball, 120 play hockey. 60 play both volleyball and hockey. How many are not playing either volleyball or hockey?
3. How many edges are there in a graph with ten vertices each of degree six?

CO3 Und 2
4. State Complete graph with examples.

CO3 Rem 2
5. Construct the graph for the following adjacency matrix $\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right)$

CO BL

CO2 Und 2

CO2 Und 2

CO3 App 2

CO2 App 8
$a_{n}-2 a_{n-1}-3 a_{n-2}=4^{n}+6$.
(ii) In a survey of 100 students it was found that 30 studied mathematics, 54 studied statistics and 25 studied Operations Research. 1 studied all the three subjects. 20 studied mathematics and statistics, 3 studied mathematics and operations research and 15 studied statistics and operations research.
i) How many students studied none of the subjects?
ii) How many students studied only mathematics?
(OR)
(b) (i) Use the method of generating function to solve the recurrence equation $a_{n}=3 a_{n-1}+1, n \geq 1$ given $a_{0}=1$.
(ii) How many positive integers not exceeding 1000 are divisible by 7 or 11 ?

CO2 App 8
CO2 App 5
7. (a) (i) Establish the isomorphism for the following pair of graphs.

CO3 App 7
(ii) State and prove Handshaking theorem and prove in an undirected graph the number of odd degree vertices are even.

CO3 App 6
(OR)
(b) (i) Prove that a connected graph is Eulerian if and only if every vertex are of even degree.
(ii) Illustrate an example for a graph which is
i) Eulerian but not Hamiltonian
ii) Hamiltonian but not Eulerian

CO3 App 6
iii) Both Eulerian and Hamiltonian
iv) Neither Eulerian nor Hamiltonian
8. (a) (i) Solve the recurrence relation for Fibonacci Sequence.
(ii) Determine the number of integers between 1 to 300 that are divisible by

1) At least one of $3,5,7$.
2) 3 and 5 but not by 7 .

CO2 App 7
2) 3 and 5 but not by 7 .

CO2 Ana 7
(OR)
(b) (i) Construct the complete graph K_{5} with vertices A, B, C, D and E and draw all the complete sub graphs of K_{5} with 4 vertices.

CO3 Ana 7
(ii) A simple graph with ' n ' vertices and ' k ' components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges. Justify the statement with a proof.

CO3 App 7

Blooms Taxonomy Abbreviations: Rem-Remembrance, Und-Understanding, App- Apply, Ana-Analyze, Eva-Evaluate, Cre-Create

