|                                                                                                                          |                   |                          | , , , , , , , , , , , , , , , , , , , | · · ·      |     |         |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|---------------------------------------|------------|-----|---------|--|--|--|
| REG.No.                                                                                                                  |                   |                          |                                       |            |     |         |  |  |  |
| SNS COLLEGE OF<br>(An Autonomous                                                                                         |                   |                          | <b>S</b>                              |            |     |         |  |  |  |
| COIMBATORE-641 035                                                                                                       |                   |                          |                                       |            |     | פווטווט |  |  |  |
| B.E/B.Tech- INTERNAL ASSESSMENT – II                                                                                     |                   |                          |                                       |            |     |         |  |  |  |
| Department of Mathematics                                                                                                |                   |                          |                                       |            |     |         |  |  |  |
| Academic year 2023-24 (ODD)/ FIFTH SEMESTER<br>19MAT301 – DISCRETE MATHEMATICS                                           |                   |                          |                                       |            |     |         |  |  |  |
| (Common to CSE, IT & AIML)                                                                                               |                   |                          |                                       | IК         |     |         |  |  |  |
| (REGULATION 2019)                                                                                                        |                   |                          |                                       |            |     |         |  |  |  |
| TIME: 1.5 HOURS                                                                                                          | MUM MA            | ARKS:                    | 50                                    |            |     |         |  |  |  |
| ANSWER ALL Q                                                                                                             |                   |                          |                                       |            |     |         |  |  |  |
| <u>PART A — (5 x 2 :</u>                                                                                                 | <u>= 10 Marks</u> | <u>s)</u>                |                                       |            |     |         |  |  |  |
|                                                                                                                          |                   |                          |                                       | CO         | BL  |         |  |  |  |
| <b>1.</b> Form the recurrence relation for the sequence S(n)                                                             | $= 6 (-5)^n, n$   | $\geq 0$                 |                                       | CO2        | Und | 2       |  |  |  |
| A survey of 500 from a school produced the follow                                                                        | ing informa       | ation. 2                 | 200 play                              |            |     |         |  |  |  |
| <ol> <li>volley ball, 120 play hockey. 60 play both volleyba<br/>are not playing either volleyball or hockey?</li> </ol> | -                 |                          |                                       | CO2        | Und | 2       |  |  |  |
| 3. How many edges are there in a graph with ten vertices each of degree six?                                             |                   | CO3                      | Und                                   | 2          |     |         |  |  |  |
| <b>4.</b> State Complete graph with examples.                                                                            |                   |                          |                                       | CO3        | Rem | 2       |  |  |  |
| <b>5.</b> Construct the graph for the following adjacency ma                                                             | 101               | 0 1<br>1 1<br>0 1<br>1 0 |                                       | CO3        | Арр | 2       |  |  |  |
| <u>PART B — (13 + 13 +</u>                                                                                               |                   | <u>arks)</u>             |                                       |            |     |         |  |  |  |
| 6. (a) (i) Solve linear non homogeneous recurrence ec                                                                    | quation           |                          |                                       | <b>CO2</b> | Арр | 8       |  |  |  |
| $a_n - 2a_{n-1} - 3a_{n-2} = 4^n + 6.$                                                                                   | 20 studied        |                          | matica F                              | 1          | ••  | -       |  |  |  |
| (ii) In a survey of 100 students it was found that studied statistics and 25 studied Operations I                        |                   |                          |                                       | +          |     |         |  |  |  |
| three subjects. 20 studied mathematics and s                                                                             |                   |                          |                                       |            |     |         |  |  |  |
| mathematics and operations research and 15 studied statistics and                                                        |                   |                          | CO2                                   | App        | 5   |         |  |  |  |
| operations research.                                                                                                     |                   |                          |                                       |            |     |         |  |  |  |
| i) How many students studied none                                                                                        | •                 |                          |                                       |            |     |         |  |  |  |
| ii) How many students studied only mathematics?<br>(OR)                                                                  |                   |                          |                                       |            |     |         |  |  |  |
| ( <b>b</b> ) ( <b>i</b> ) Use the method of generating function to so                                                    | lve the recu      | ırrence                  | equation                              |            |     |         |  |  |  |
| $a_n = 3a_{n-1} + 1, \ n \ge 1$ given $a_0 = 1$ .                                                                        |                   |                          | CO2                                   | Арр        | 8   |         |  |  |  |
| (ii) How many positive integers not exceeding 1000 are divisible by 7 or 11?                                             |                   |                          | ? CO2                                 | App        | 5   |         |  |  |  |
|                                                                                                                          |                   |                          |                                       |            |     |         |  |  |  |

7. (a) (i) Establish the isomorphism for the following pair of graphs.



|               | ( <b>ii</b> )                                                                                              | State and prove Handshaking theorem and prove in an undirected graph<br>the number of odd degree vertices are even.                              |            | Арр | 6 |  |  |
|---------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|---|--|--|
|               |                                                                                                            | ( <b>OR</b> )                                                                                                                                    |            |     |   |  |  |
| (b            | ) (i)                                                                                                      | Prove that a connected graph is Eulerian if and only if every vertex are of even degree.                                                         | CO3        | Арр | 7 |  |  |
|               | ( <b>ii</b> )                                                                                              | Illustrate an example for a graph which is                                                                                                       |            |     |   |  |  |
|               |                                                                                                            | i) Eulerian but not Hamiltonian                                                                                                                  |            |     |   |  |  |
|               |                                                                                                            | ii) Hamiltonian but not Eulerian                                                                                                                 | <b>CO3</b> | Арр | 6 |  |  |
|               |                                                                                                            | iii) Both Eulerian and Hamiltonian                                                                                                               |            |     | - |  |  |
|               |                                                                                                            | iv) Neither Eulerian nor Hamiltonian                                                                                                             |            |     |   |  |  |
| <b>8.</b> (a  | ı) (i)                                                                                                     | Solve the recurrence relation for Fibonacci Sequence.                                                                                            | CO2        | Ana | 7 |  |  |
| ,             | (ii)                                                                                                       | ii) Determine the number of integers between 1 to 300 that are divisible by                                                                      |            |     |   |  |  |
|               | <ol> <li>At least one of 3, 5, 7.</li> <li>3 and 5 but not by 7.</li> <li>5 but not by 3 and 7.</li> </ol> |                                                                                                                                                  | CO2        | Арр | 7 |  |  |
| ( <b>OR</b> ) |                                                                                                            |                                                                                                                                                  |            |     |   |  |  |
| (b            | ) (i)                                                                                                      | Construct the complete graph $K_5$ with vertices A, B, C, D and E and draw all the complete sub graphs of $K_5$ with 4 vertices.                 | CO3        | Ana | 7 |  |  |
|               | ( <b>ii</b> )                                                                                              | A simple graph with 'n' vertices and 'k' components cannot have more<br>than $\frac{(n-k)(n-k+1)}{2}$ edges. Justify the statement with a proof. | CO3        | Арр | 7 |  |  |

## Blooms Taxonomy Abbreviations: Rem-Remembrance, Und-Understanding, App- Apply, Ana-Analyze, Eva-Evaluate, Cre-Create

\*\*\*\*\*\*\*