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Introduction \

Materials differ from one anothé; in their
properties. Some solids are brittle, some are ductile,

some are malleable, some are strong, some: are weak,
some are good conductors of heat and electricity, some

‘are non-conductors of heat and electricity, some are
magnetic, some are non-magnetic and so on.

The differences in the properties of the solids are
due to their structures. The behaviour of a solid material

is closely related to its crystal structure.

Classification “of Solids

From the crystal structure point of view, solid-state
Materials are broadly classified as '

() ,Crystallilie materials and w | 1
(11) Non-"CI'YSt'ﬁlline | or Ambrphous materia”‘ls _

(e
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‘ The crystalline solids are made up of either

Emetﬂllic crystals or non-metallic crystals.

\

Example

‘ Metallic crystals

Copper; silver, aluminium, tungsten, etc.

6 Crystalline Materials or Crystals ,‘
|

) The materials il? which the atoms gy, Non.metallic crystals
"/ arranged in @ systematic pattern (regular pattern)

' +“gre known as crystalline materials) |
/ In these materials, the arrangement of atoms is in! polymers; etc.

a periodically repeating pattern.> [ o
4

e solid can be either a single crysta]iv Amorphous means without form.

[ The crystallin
or fioly-crystallineB In the single crystal, the entire v :
[ r}“'&- The materials in which atoms are. arranged

solid consists of only one crystal. \

: - ) | ijn an irregular (random

In poly - crystalline material, a collection of manj. ;morphous materials or non-crys ine materials.
small crystals are separated by well-defined boundaries.f‘ i 12 K l\

. Example '

<Glass, rubber and plastics.> |

The arrangemeﬂt of atoms in amorphous materials
g

g. 1.2 !

¥ 4

Crystalline carbon, germanium, silicon, crystallized

fphous Materiais

) fashion are. known as

The atomic arrangements of the single crystal an(
the poly - crystal are shown in fig 1.1 (a) and (b).

“ d . . .
| in two dimensions 18 shown in fi

ey (a) : (b)
ig. 1.1 Atomic arrangement (a) single crystal solid

(b) poly-crystalline solid
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. Lattice is an imagin e :
Let us study some of the important cryStaHOgraph; 1 vl tpa, ary g .ometl.'lcal concept
; It is @ arge mbly of points in which each point

terms. represents the position of an atom in a crystal.
Cry stal D efinition
Acrystal is a three-dimensional solid which consis It is as an array of points in space in which

'the environment about each point is the same i.e., -
every point has identical surroundings to that of
every other point in the array.

of a periodic arrangement of atoms.

™ Crystal structure i‘
: ation
» The arrangement of atoms in a crystal is know,"ExPIan ;
as crystal structure. It is the basis for unclerstandimIh i collectm:ll fp ointelin o dimensions s showr,
the properties of materials. N fig. 1.3 (a) and (b)
' It is found that in fig 1.3 (a) the environment about
Crystallography any two points is same. Hence, it 1s a space lattice.
The branch of physics which deals with interna. @ © © @ o 0o o 0 ...00
structure, properties, external or i i . | °© o e o
[l o rnal or internal symmetriesitc ¢ o o o gl e o ©
crystal is called as crystallography. | i ° . o
e e © © ® o ©
@ ' G
LATTICE | 0o o o o e ‘7% e
" °
stal i : ° ’ e
dl'mmsionc:yAs 15 a collection of atoms in three 25> 1.9 2 0 i® o
. a . 4
S 'matter of convenience, these atoms are € © © 6 ? e i
T @s points to study the crystal structure. - b
The representati B . : (b) Two-dimensional
s . ; 1on of atoms in the crystal as points (a) Two-dlmen.sxonal collection of points but
ee dimensions ig known g o ol space lattice not a space lattice
“  simply lattice. 8 iepace. lattice: §i il " Fig. 1.3 s
A i
- A‘
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On the other hand, in fig. 1.3 (b) the environm \
e

about any two points is not the same. So, it ig not%“attice plane:
l

space lattice. A plane containing lattice points is known as

The similar argument  is  extended iattice plane.
three-dimensional space lattice. ' .
Bas1S
Definition

“ The crystal structure is obtained by adding a
anit assembly of atoms to each lattice point. This
imit assembly is called as basis. ‘

| ‘

i«]xplanation

: A basis may be a single atom or assembly of atoms

which is identical in composition, arrangement and

E)rientation.

Unit Cell

i When the basis is repeated in a space lattice with
correct periodicity in all the three directions, then it

Fig. 1.4 Space lattice in three - dimensions éives the actual crystal structure. '

‘; Therefore, a space lattice combined with a basis
Lattice points gives a crystal structure.
ik

LS —

poiit ?Fipomts in a space lattice are called lattict ie :
:
g 14). | The basis representing lattice points is shown in
,ﬁg 15 in which two atoms (represented by circles of

smaller and large radii) are added to one lattice point

Lattice lines : ’ " St
{ \represented by a black dot).

Por many metals, the number of atoms in basis is

The latti : ‘
a tlce POIntS are joi:ned With lm es as showrxj‘i :
aluminium and barium crystals).

in fig. 14, 1:
These lines are known as lattice lines.

}
i
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Fig. 1.5 Crystal structure is obtained when a basis
A‘_a——P'B AI'

is added to each lattice point
Fig. 1.6 Unit cell in two - dimension

For NaCl and KCl, each basis has t
wo atoms an The region ABCD is known as unit cell and

—for CaF,), it has three atoms. But, for many complicate_, —
structures, the basis exceeds more than 1000 atoms. o’ and b’ are basis vectors

The choice of a unit cell is not unique. But, it can
d in a number of ways like A’B'C'D’ or
ymmetry of the

== be constructe
»B” ¢”D”; without affecting the s

g qystal (fig. 1.6).

MR

Definition
[
pE. e(' A unit cell is defined as the smallest

UNIT CELL . ' :
W ‘geometric figure which is repeated to derive the
actual crystal structure.

Considéi. . (o e
in fig. 1.6. © tWo- d.lmeps1°nal space lattice as show!
b A The unit cell fully represents the
. e
characteristics of the entire crystal.
extended for a

It is found th : “‘. v ‘
rotated repeatedly gt Whe;}"a parallelogram ABCD ¥ y R
Y an- integral multiple of vector:iyi. This same principle 15 . ;
‘three-dimensional case. A unit cell in three-dimensions

@ and B
correspondi : . ‘
or array is obtajn;l?,g tOAB and AD, the whole patter” ig ghown fig. 1.7.
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It is also defined as the smallest volume of ;|
cture i

solid from which the entire crystal stru |

constructed by translational repetition iy |
three-dimensions. > 1
%i |

\

Q\\\\\\‘

4~—<S"
e
| Cell §§éi Lattico
Points

Fig. 1.7 Unit cell in three-dimensions

/
A/

Lattice parameters -of the unit cell

A unit cell is constructed if the distance betwees
two neighbouring lattide points along three directions
and angles between them are known. |

. Tllae distance between two neighouring lattice points
is nothing but the edges of the unit cell. The lengths
OA, OB, OC in three axes OX, OY and OZ are the axiéd
lengths or intereepts. (Fig. 1.8). o

] 1

Crystal PAYEE 1.11

AY
B
A
b
a'\‘{ a
o) N L
X
c c B
Z

Fig. 1.8 Lattice parameters of the unit cell

In fig 1.8, the axial lengths OA=a, OB=b and
OC =c are known as intercepts a,b and ¢ along three

axes.

Interfacial angles

The angles between three intercepts (o, B and
Y) are called interfacial angles.

Both intercepts and interfacial angles are the
lattice parameters of the unit cell. They determine
the actual shape and size of the unit cell.

e \
QI}'stal systems
> There are ‘T’ types of crystal systems. They
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The.actunl shape and size of the unit cell can be determined by knowing the
values of intercepts and interfacial angles.

Y|

-
=]
P

zZ,C
Fig. 5.7 Lattice parameters of a unit cell

Primitive cell

It is defined as unit cell which contains lattice points at corner only. (or) It is
the simplest type of unit cell contains only one lattice point per unit cell.
Example : Simple cubic (SC)

Non-primitive cell

Ifthere are more than one lattice point in a unit cell, it is called a non-primitive
cell.
Example : BCC and FCC contains more than one lattice point per unit cell.

5.6 CRYSTAL SYSTEMS

Crystals are classified into seven crystal systems on the basis of lattice
parameters. The seven basic crystal systems are

i, Cubic system

i, Tetragonal system

iii. Orthorhombic system

iv. Monoclinic system

v. Triclinic system

vi. Rhombohedral (or) Trigonal system

vii. Hexagonal system
; The'seven crystal systems are discussed briefly one by one as follows.
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(i)

(if)

(iii)

(iv)

Cubic system
This is a crystal system with three axes of
equal lengths perpendicular to each other.
(Fig. 5.8a.).
ie,a=b=cand

a=f=y=90°
Example
Sodium chloride (NaCl), Calcium fluoride
(CaF,).

Tetragonal system

In this system, there are three axes perpendicular
to each other. Two axes are equal in length and
third axis is either longer or shorter. (Fig. 5.8b). WQ_L}‘"” Ly

—————— —-———X

ie., a=b=#c & > r
o= B:‘Y:QOO
Example

Ordinary white tin, indium. \ £

Orthorhombic system

In this system, there are three axes perpendicular
to each other. These axes are all of different :
lengths. (Fig. 5.8¢). WQ-}"E — X
ie,, a#b=#c 5

a=B=y=90°
Example 7 Fig. 5.8¢
Sulphur, Topaz.

Monoclinic system
In this system, there are three axes of different lengths.

Two axes are perpendicular to each other and third is
obliquely inclined. (Fig.5.84).
az# b;t cand
je., o=P=90% y=90°
Example : Na, SO;, FeSO,.
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(v) Triclinic system

In this system, there are three axes of unequal

lengths, all oblique to each other. (Fig.5.8e).
azb=#cand

azB=y=90°

Example
Copper sulphate (CuSO,).
Potassium dichromate (K,Cr,0,)

(vij Rhombohedral system Y

In this system, there are three axes equal in

lengths and are equally inclined to each other A'

at an angle other than 90°. (Fig.5.8f).
a=b=cand | e X
a=p=y=90°

Example

Calcite. ' _ 7 Fig. 58f

(vii) Hexagonal system
In this system, two axes (say horizontal) are equal in one plane gt 120° with
each other. The third axis (say vertical) is different
fie., either longer or shorter than the other three axes) and perpendicular to

this plane. (Fig.5.8g).

je., a=b=cand a=p=90% y=120°
Example
- Quartz, tourmaline.
c
Y1

 Fig.58g
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Table 5.2 Seven crystal systems

1. | Cubic a=b=c | a=p=y=90° |NaCl, CaF,, Au, Cu

a=p=y=90° Ordinary white, tin,
indium, SnO,

2. | Tetragonal a=b#c

3. | Orthorhombic | a#b=#c a=B=y=90° Sulphur, Topaz,

BaSO,, KNO,
4. Monoclinic azb#c a=[3=90% Na,SO,, FeSO,,
y#90° Gypsum
5. | Triclinic azb=c a#B#y=90° CuS0,, K,Cr,0,

6. | Rhombohedral | a=b=c a=B=y+90° Calcite, Sh, Bi.

7. Hexagonal a=bzc a=p3=90°% Quartz, Zn, Mg.
y=120°

5.7 BRAVAIS LATTICES
Bravais in 1880 showed that there are 14 possible types of space lattices in

the 7 crystal systems as shown in table 5.3.

et

1. | Cubic 3 Simple, Body centred,

Face centred
2. | Tetragonal 2 Simple, body centred
3. | Orthorhombic 4 Simple, Body centred,

Face centred, Base centreg
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4. | Monoclinic 2 Simple, Base centred
5. | Triclinic 1 Simple
6. | Rhombohedral 1 Simple
7. | Hexagonal 1 Simple
Total 14

According to Bravais, there are only 14 possible ways of arranging points in
space lattice from the 7 crystal systems such that, all the lattice points have exactly
the same surroundings. These 14 space lattices are called the Bravais lattices.

The 14 possible Bravais lattices drawn from the 7 crystal systems are shown
in Fig.(5.9).

[ ] :
T ;
| 1
o~ .--,C{. -8 _?:".’ - - vy -
a al |* a| |7 c c T
; ]
a a a T ]
a a® a' 2 a 2 a'
P F [ P [
Cubic Tetragonal
9 [/ |
| | |
1 ] 1
] ] ]
! Py !
c c| || oW T c| 7
i i |
a a Y a P a ]
g CI:J ;_? |b (Rhombohedral)
' Trigonal
Orthohombic
o -2
c
St
QA
atei—e¢"2
a
P M fini P
Hexagonal onociinic s g
g Triclinic

- Fig. 5.9 Three dimensional 14 Bravais lattices
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N LATTICE CONSTANT AND DENSITY

tice constant ‘a’.

s —
e ——"

512
53 RELATION BETWEE

Consider a cubic crystal of lat

The density of the crystal = P
Volume of the unit cll = a
Mass in each unit cell = o )

volume

_ Mass
 density =

The number of atoms per unit cell = n
The atomic weight of the material = M
Avogadros number = N
(i.e., Number of molecules per kg mole of the substance)
Mass of each molecule = %
where M is atomic weight
Mass in each unitcell = nx Lz
[ (2)

(for n atoms)
From equations (1) and (2), we have
g . MM - M
N P Na®

(Number of atoms per unit cell) x (Atomic weight)
(Avogadros number) x (Lattice constant )®
From the above equation, the value of lattice constant ‘@’ can be calculated.

or p=

9.9 LATTICE PLANE

T : :
- }t’e Ctry ?tal lattice may be considered as an aggregate of a set of parallel
uidistant planes passing through o ]
gh the lattice po
lattice planes. points. These planes are known s
For a parti latt: .
particular lattice, these sets of phase may be chosen in different ways,

for example (a), (b), (c) and (d)
el etc. as in Fig. (5.10). N ises that
how to designate (fix) a plane in the crysta] ). Now the problem arises
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(a)m:::::. NG
@ ;;-//.///:(c)

Fig. 5. 10 Different lattice planes

510 MILLER INDICES

Miller introduced a SSE_ of three numbers to designate a plane in a crystal.
This set of three numbers are known as Miller indices of the concerned plane.
Miller indices is defined as the reciprocal of the intercepts made by the plane

on the crystallographic axes which are reduced to smallest numbers.

Explanation

The orientation of planes or faces in a crystal may be described in terms of
their intercepts on the three axes.

For example, the plane ABC of Fig.(5.11) has intercepts of 2 axial units on X-
axis, 1 axial units on Y-axis and 1 axial units on Z-axis.

In other words, the numerical parameters of the faces are 2, 1 and 1. Hence

its orientation is (211 ) (et
Y
(2l " \
-
\ \
}' pr i
\
7 U‘ !
U.l‘ﬂ’)
c S X
F
./

Z
Fig. 5.11 Different planes cutting crystallographic axes

Miller suggested that it is more useful to describe the orientation of a plane

" the reciprocal of its numerical parameters rather than by its linear parameters.
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These reciprocals are converted into whole numbers. They are called Miller

111 .
indices. Hence Miller indice of a plane ABC of Fig.(5.11) are (E 1 I) or simply

111 .
(1 2 2). Similarly Miller indice of a plane DEF are [E 2 5) or simply (4 3 6)

Miller indices is also defined as the three smallest possible integers, which

have the same ratio as the reciprocals of the intercepts of the plane concerned
along the 3 axes.

Procedure for finding Miller indices
To find the Miller indices for a given plane, the following steps are to be
followed.

i.  The intercepts made by the plane along X, Y and Z axes are noted.

ii. The co-efficients of the intercepts are noted separately.

iii. Inverse is to be taken.

iv. The fractions are multiplied by LCM so that all the fractions become
integers.

V.  Write the integers within the parentheses.

Points to remember

While finding the Miller indices of a plane, following points should be kept in
mind.

i.  The Miller indices should be enclosed only in this bracket, (ie.,) ()

ii. There should not be any comma'’s in between the numbers.

iii. If the Miller indices is say (2 6 3) means it should be read as two six

three, and not as two hundred and sixty three.
iv. The direction of plane can be represented by enclosing the Miller indices
in a square bracket eg. [2 6 3].

When a plane is parallel to one of the coordinate axes, it is said to meet

that axis at infinity. Since — =0, the Miller indices for that axis is zero.

vi. When the intercept of a plane is on the negative part of any axis,
Miller indices is distinguished b

Eg.(h k ). ‘

the
Yy a bar put directly over it.
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rtant reatures of Miller indices
mp " f ';'
E F
7 ?
Y ~ |! G ¥
o c
/ X
' : (c) plene (001)
z Z z
Y
z
E F E {F E / F ¥
A= % R 8 ' > %
%% . |
4 /
6 i N Y A
/ Y ! /,
D c ) c
X X
(&) plane (100) (b) piane (070) (c) plane (001)
z z
E F E I F
A / A o .J- ‘
/. B B
év/ Y /// Y : "’,_\
G A ) 7 /. G
& f;",’,[r
B c 2 SC
% /x )\/
@ piane (111) (b) plane (112) (c) plane (111)

Fig. 5.12 Miller indices for some crystal planes
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Important features of the Miller indices, are as follows

i.  All equally, spaced parallel planes have the same index numbers (hk})

ii. Aplane parallel to one of the co-ordinate axes has an ir.lteI.'CGPt 20f infinity,

iii. If the miller indices of two planes have the same ratio (ie. 422 or 211),
then the planes are parallel to each other. .

iv. Ifanormalis drawn to a plane (hk), the direction of the normal is [hk/]

5.11 ‘d' SPACING (INTERPLANAR DISTANCE) IN CUBIC LATTICE

‘d’ spacing (or) interplanar distance is the distance between any two

successive planes.

Consider a cubic crystal with ‘a’ as length ¥
of the cube edge and a plane ABC as show in
Fig.(5.13). Let this plane belong to a family of B 2
planes whose Miller indices are (h k ). The
perpendicular OP from the origin of the cube to
the plane ABC represents the interplanar

spacing (d) of this family of plane. 4
The plane ABC makes OA, OB and OC as 0 Zy
intercepts on the reference axes OX, OY and 0OZ C a
respectively. a, B and y are the angles between z
reference axes OX, OY, OZ and OP respectively. Fig. 5.13

NN
0

We know that Miller indices of a plane are the smallest integers of the
reciprocals of its intercepts. Therefore the intercepts

may also be expressed as reciprocals of Miller indices.
: . OR - _ 1.1 1
(ie) OA:0B:0C = I
/P
_ 2.3 a .
~ h Tk "1 s
0 y A -X

~0A = %;03: % and OC =

Nlm

From the geometry of the right angles OAP, OBP
and OCP (Fig.5.14).
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We have, Cosa = op =£=@
OA a
h
OP d dk
Cosb = o8 =2 =2
k
OP _d _d
Cosy = O0OC a a
l

We know that, the law of direction cosines is
Cos? o+ cos? B +cos?2y = 1
Substituting the values, we have,

28 -

d2
— h?+k2+ %) = 1
a

a2

& = Weitp)

a
i = vh? +k? 4+ 2
This is the relation between interplanar spacing ‘d’, cube edge ‘a’ and Miller

indices (h k I ). Extending the planes to cut at 2a, 3a, ..... so on
2a

We have d, = m
3a

Vvh? + k2 + 2

dg

512 IMPORTANT PARAMETERS IN CRYSTAL STRUCTURE
Let us discuss some of the important parameters which are used to describe
the crystal structure.

L. Number of atoms per unit cell
The number of. atoms possessed by a unit cell is known as number of atoms
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per unit cell. The distribution of atoms is different for different lattice structure,

This can be determined if the arrangement of atoms inside the unit cell is known,

ii. Coordination number ¢

The coordination number of an atom in a crystal is the number o 'nearest
atoms directly surrounding with that atom. If the coordination number is high
then the structure will be more closely packed. It signifies the tightness of packing
of atoms in the crystal.
ili. Atomic radius

Atomic radius is defined as half of the distance between any two nearest

neighbour atoms which have direct contact with each other. It is usually expressed

in terms of cube edge ‘a’. (Lattice parameter).

2r = a
- 4
| T2
. . . . : ZT
iv.  Atomic packing factor (or) Packing density

Atomic packing factor is defined as the ratio between

the volume occupied by the total number of atoms per unit Fig. 5.15 Atomic radius
cell (v) to the total volume of the unit cell (V).

Volume occupied by the total

(ie,) | Atomic packing factor = number of atoms per unit cell (v)
Total volume of the unit cell (V)

v
APF = v
5.12.1 Simple cubic (SC) structure
A simple cubic (SC) unit cell consists of eight corner atoms as shown in

Fig.(5.16). Let us determine the characteristics of the SC structure.

Fig. 5.16 Simple cube
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i.  Number of atoms per unit cell

In actual crystal cach and every corner atoms is shared by eight adjacent
th

unit cells. Therefore, each and every corner atoms contributes r of its part to one

unit cell.
The total number of atoms present in a unit cell

1
= = x total number of corner atoms

= %xS:latom.

i 1"
.1 - of an atoms

8

Corner atoms

Y

Fig. 5.17 Arrangement of atoms in SC unit cell

ii. Co-ordination number
Let us consider any corner atom, there are four nearest neighbours in its own

plane. There is another nearest neighbour in a plane which lies just above this

atom and another just below this atom. Therefore, the total number of nearest

neighbours is six and hence the co-ordination number is 6.
Y
i

=

, [y
Fig. 5.18 Co-ordination number
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iii. Atomic radius

For a simple cubic unit cell, the atomic radius is given by, T = 2

Where ‘@’ is the side of the unit cell and is equal to the distance between

centres of the two nearest atoms.

Fig. 5.19 Calculation of atomic radius (SC)

iv.  Atomic packing factor
Number of atoms per unit cell =

i}
Wl =
A

L

Volume of one atom v

" Radius of atom in SC r [-- a=2r]

I
o ®

Volume of the unitcell V = a

Volume occupied by the total

Atomic packing factor _ number of atoms per unit cell (v)
Total volume of the unit cell (V)
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Therefore, 52% of the volume is occupied by the atoms and remaining 48%
volume is vacant in SC structure.

Thus, the packing density is 52%. Since the packing density is very low, SC
has loosely packed structure.
Example : Polonium (Po)

5.12.2 Body centred cubic (BCC) structure

In body centered cubic structure, the unit cell has one atom at each corner of
the cube and one at body center of the cube. Fig.(5.20) shows the arrangement of
atoms in a BCC cell.

Fig. 5.20 BCC cell
i. Number of atoms per unit cell

In a body centered cubic structure, the atoms touch along the diagonal of the
body. Each and every corner atoms are shared by eight adjacent unit cell.
.. The total number of atoms contributed by the corner atoms

= %xB:latom.

One full atom at the center of the unit cell.
Therefore, total number of atoms present in BCC unit cell = 2 atoms.

l«— Corner atom

- Body centred atom

Fig. 5.21 Arrangement of atom in BCC cell
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ii.  Co-ordination number it cell

In this case, there are 8 corner atoms one at each corner of the unit cell an(
one atom at the body centre. For any corner atom of the unit cell, the nearegt
atoms are the body centred atoms. As such, each corner atom is surrounded by 8

unit cells having 8 body centred atoms. Hence coordination number is 8.

ili. Atomic radius

Consider the atoms at A, G and at centre of the cell. These atoms lie in one
straight line along the body diagonal AG of the cube.

E F
Al B
a o
H 1o 5
o — c/
a
(a) (b)

: Fig. 5.22 Atomic radius is BCC
From the Fig. 5.22

AG? = AD2+D@2?
(4r)2 = AD24 DC2? + CG2 [--DG%=DC2 + CG?
(4r)2 = a24 g2 4 g2
16r2 = 3a2
2 o 8
T 16
Atomicradius r = a—ii

iv.  Atomic packing factor

Number of atoms per unit cell = 9

1}

Volume of 2 atoms  (v) 2 x %m.a
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Radius of atomin BCC (r) = 5:1/_3
Volume of the unitcell (V) = g3

Atomic packing factor

Volume occupied by the total
number of atoms per unit cell (v)
Total volume of the unit cell (V)

APF

2x %nra
a3

gm.a ) %nra
(4r )3 433

TIa 3

v3) ()

8 rd

3

64r3

\/§ X3
8 % VY3x3xm _ J3n
3 64 8
0.68

Therefore, 68% of the volume is occupied by atoms and remaining 32% of the

volume is vacant in BCC structure.

Thus the packing density is 68%. Since the packing density is greater than

simple cubic, it has tightly packed structure when

compared to SC.

Examples : Tungsten, Molybdenum, Chromium.

3.12.3 Face centred cubic (FCC) structure
A face centered cubic structure consists of eight
corner atoms and six face centered atoms. The

arrangement of atoms in face centered cubic unit cell is

shown in Fig.(5.23).

Fig. 5.23 FCC unit cell
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i Number of atoms per unit cell ’
An FCC unit cell consists of eight corner atoms and each and every corner

atoms is shared by eight adjacent unit cells. Therefore, each and every corner atom

contributes %“‘ of its part to one unit cell.

1
The total number of atoms by corner atom = 3 x 8 =1 atom.

In addition, there are 6 atoms at the face centers of the cube. Each face centereq

atoms is shared by two surround unit cells. Hence, the number of face centereq
atoms in unit cell,

= %x6=3atoms.

Therefore, total number of atoms in one unit cell =1 + 3 = 4 atoms.

“/l=—— Corner atom

—— Face centred atom

Fig. 5.24 Arrangement of atoms in FCC unit cell
ii. Co-ordination number

In this case, there are eight atoms at the ej

ght corners of the unit cel] and 6
atoms at center of the six faces.

atom. For any corner atom, there are four face center
above its plane and four below its plane.

Thus, the co-ordination number ofthiscase=4 +4 4+ 4 = 12.

iii. Atomic radius
For a FCC unit cell, the atomic radiyg can be calculated from Fig.(5.25) as
follows:



Cws——’f 525
: DB2

= DC?+ cp? g
(4r)2 = ﬂ2 + (12
a
I'2 = Ef_
16
T V2a? C
J—ﬁ Fig. 5.25 Calculation of
Atomicradius r = ay2 atomic radius in FCC
T4

. Atomic packing factor

Number of atoms per unit cell = 4

Volume of 4 atoms (v) = 4x % s
! . av2
Radius of atom in FCC (r) = e
Volume of the unit cell (V) = a3

Volume occupied by the total

Atomié packing factor = number of atoms per unit cell (v)
Total volume of the unit cell (V)

4 3 16 3 16 3

4x§1rr =-§~Ttl‘ =—3—nr
_ [41-)3 43 r? 64r?
2 (V2 22
16 2«./—2_ nw/E
= —X T =
3 64 6

APF = 0.74

Therefore, 74% of the volume is occupied by the atoms and remaining 26% of
the volume is vacant in FCC structure.

Thus the packing density in 74%. Since the packing density is high the FCC
Structure hag tightly packed structure.
Examples: COpper Nickel, Gold, Lead and Platinum.

|
W
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9.12.4 Hexagonal close packed structure />_/___’\ Top layer
The hexagonal close packed (HCP) "\':'/"_ AN _

e
structure is shown in Fig.(5.26). In the HCP N
\ .
structure, an unit cell contains three types C .// [~ } Middle layer
of atoms as three layers. » /‘\ C}/2
a. The unit cell has one atom at each \ .
ottom layer
of the 12 corners of the hexagonal < M
structure. —=— .
b. 2 base centered atom, one at the Fig. 5.26 HCP structure

top face of the hexagon and

another at the bottom face of the hexagon.

In addition to corner and base atoms, 3 atoms are situated in between
the top and bottom face of hexagon, in alternate vertical faces. Also note

that these atoms are situated inside the faces. So that they can’t be shared
by other cells as shown in Fig.(5.26).

i Number of atoms per unit cell

Each corner atom is shared by six other unit cell, (i.e) each corner atom gives
th

3 of its share.

Number of atoms in the upper hexagonal plane = % X6=1

Number of atoms in the lower hexagonal plane = —61; x6=1

Each central atom is shared by two unit cells, which means upper and lower

g
planes contain = atom each.

Total number of central atoms jn both upper and lower planes = = x2=1
2

Finally, 3 atoms situated in the middle layer of the unit ce]]. They are not
shared by any other adjacent unit cells,

. Total number of atoms in HCP ¢rysta] = l1+1+1+3=6.
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il. Co-ordination number

If we consider the bottom layer, the central atom has 6 nearest neighbouring

atomsi : C

S in the same plane. Further at a distance 5 from the bottom layer, there are
two layers, one is above and another is below the bottom layer containing 3 atoms
mn each layer.

~- Total number of neighbouring atoms = 6 + 3 + 3 = 12 atoms.
.. Co-ordination number = 12.

iii. Atomicradius
To find the atomic radius of the HCP structure.
Consider any two corner atoms. It has to be noted that

each and every corner atom touches each other, therefore
they are the nearest neighbours.

Fig. 5.27 Calculation of

From Fig.(5.27), we can write, atomic radius in HCP

a4 = 2r
Atomic radius r = %
C_u
iv. Relation betweenCanda [; ratio]

Let ‘C’ is the height of the unit cell and ‘@’ is the distance between two
neighbouring atoms. Now consider the triangle ABO in the bottom layer of HCP

structure.(Fig.5.28).

c
0
da
cr,
30° X Y
Ol
B

(a) Bottom layer of HCP structure (b) Triangle ABO
Fig. 5.28
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Here A, B and O are the lattice points and exactly above these at a

perpendicular distance the next layer atom lies at C.

AY
In the triangle ABY, Cos 30° AB

AY = ABCos30°

_ a8 [-AB=a
2
[+ Cos 30° =£
2
2
But, AX = 3 AY
_ 2248
3 2
Y
V3
In the triangle AXC,

AC? = AX2?+(CX2
Substituting the values for AC2, AX2 and CX?2 we have,

5 a? (2
a = —_—t —
3 4
¢ o e 2
4 3
¢ 2
4 ~ 3
Celiii's
a1 Reg
G niss 18
8. V3
C
— = 1633
a 4
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Atomic packing factor
Area of the base = 6 x Area of the triangle AOB.
. Area of the triangle AOB = [.1_) (BO) (AY)
2
- 1.2
2 2
Thus, the area of thebase = gx22 av3
N
- 2@
Hence, the volume of the HCP unit cell (V) = Area x C (height)
v - 33a%c
2
Number of atoms present in a unit cell = 6
. Volume of the atoms present in unit cell (v) =6 x % =
24 (a . a
= ?[“2-) [~ r-El
v = =zad
, . Volume of the atoms in unit cell (v)
Atomic packing factor = Volume of the unit cell (V)
ﬁﬂa
= :_3_ ﬁa2c
2
2na ..C_ |8
= 3J3C "a V3
1
s, 2x (_3_)2
34318
g
-IT8V2
APF = 0.74
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Therefore, 74% of the volume is occupied by the atoms and remaining 26% of

the volume is vacant in HCP structure.
Thus, the density of packing is 74% and it is a close packed structure.

Examples : Zinc, Magnesium, Zirconium and Titanium.
5.13 OTHER CUBIC STRUCTURES .

Although many elements solidify in one of the structures described above,
several other elements and compounds possess combination of the structures

discussed below.

i) Sodium chloride structure
Sodium chloride crystal is an ionic one. In the sodium chloride lattice,

positively charged sodium ion and negatively charged chlorine ion are situated
side by side. It consists of two FCC sublattices. One of the chlorine ion has its

origin at (0,0,0) point while sodium ion has its origin midway along a cube edge at

a
(E’O’ 0) point as shown in Fig.(5.29). Due to the electro-static force between sodium

and chlorine ions, the two ions are attracted towards each other. When the two
ions come closer their outer electron shells come into close proximity giving rise to
strong forces of repulsion. When attraction and repulsion balance, equilibrium is
obtained. Each ion in the sodium chloride lattice has six nearest neighbour ions at
a distance a/2. (i.e) its coordination number is 6. The ionic radius of chlorine is
about 1.81 AU and for sodium, 0.98 AU. Each unit cell of sodium has four sodium
ions and four associated chlorine ions. Thus there are 4 molecules in each unit cell.
KCl, KBr, MgO, AgBr etc. have NaCl structure.

- T
’ ,\// T/?
T/ o Na+‘

ot oCl"

—

Fig 5.29 Sodium chloride structure
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:. Total number of CI~ ions per unit cell =1+ 3 =4 ions.

Thus. there are 4 Na+ and 4 Cl- ions per unit cell in a NaCl crystal,

Coordination number . +

Each CI- ions has 6 Na* ions as nearest neighbour. Similarly, each Na* jon
has 6 Cl~ ions as nearest neighbours. Hence, the coordination number of NaCl for
opposite kind of ions is 6.

Atomic radius

. a
The distance between any two nearest neighbours is o

2
Examples : KCl, KBr, CaO, etc.

i) Zinc sulphide or zinc blende cubic structure

This structure is identical to the diamond structure except that the two
interpenetrating sub lattices are occupied by two different elements. Zinc sulphide
structure results when Zn atoms are placed on one FCC lattice and S atoms on the
other FCC lattice as shown in Fig.(5.30). Some of the important compounds which
process this structure are semiconductors like InSb,, GaAs, ZnS and CuCl.

4

< ® | e

Fig 5.30 Zinc sulphide structure

(ili) Diamond cubic structure
~ The diamond lattice can be considered to be formed by interpenetrating two

FCC lattice along the body diagonal by i cube edge. One sub lattice has its origin

at the point (0, 0, 0) and other at a point quarter of the way along the body diagonal
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Fig. 5.31 Diamond cubic structure

In diamond cubic unit cell, in addition to eight corner atoms, there are six
face centred atoms and four more atoms are located inside the unit cell. Each corner

atom is shared by eight adjacent unit cells and each face centred atoms is shared

by two unit cells.
a. Number of atoms per unit cell

Number of atoms contributed by 8 corner atoms = 8 x % =1 atom

Number of atoms contributed by face centred atoms = 6 % = 3 atoms.

Number of atoms contributed by body diagonal = 4 atoms.
. Total number of atoms in unit diamond cell = 8 atoms.

b. Co-ordination number
To calculate the co-ordination number, consider an atom lying along the body

diagonal. It is tetragonally bonded with four atoms. These tetragonally bonded
atoms are the nearest neighbours of the atoms and y4

hence, the coordination number is 4.

C.  Atomic radius
Consider a corner atom, the corner atom touches ”»

: 1 .
a body diagonal lies at a distance of 7 as shown in g
a

Fig (5.32), ‘ Fig. 5.32
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From the Fig.(5.33)
XYZ
Also, X72
But XZ
(2r)2
2r
Atomic radius r

d. Atomic packing factor

Number of atoms per unit cell =

Volume of 8 atoms (v)=

8x —nr’

3

Radius of atom is diamond cubic structure

Volume of the unit cell V)

“Atomic packing factor

aV3
8
a3

Volume occupied by the total
number of atoms per unit cell (v)
Total volume of the unit cell (V)

8 xi nrd

3
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32 nr® 33 _ 32143
3(8r)° 512

APF = 0.34]
.. Packing density=34%

Therefore, 34% of the volume is occupied by the atoms and remaining 66% of
the volume is vacant in diamond cubic structure.

Since the packing density is very low, it is a loosely packed structure.

iv) Graphite structure

Fig.(5.33) shows the graphite structure. The carbon atoms are arranged in
layer or sheet structure.

Covalent bonds
S
/

S AVY
'7{,"::0\{\/'0
< T : —— van der Waals bonds

’VO\M
O—% Q)

TR

Fig 5.33 Graphite structure

When each carbon atoms forms three covalent bonds with three other carbon
atoms in the same plane, with bond length 1.42 AU, sheets of graphite are produced.
The sheets are held together in a crystal by van der Waals bonds with a spacing of
about 3.4 AU. The fourth bonding electron of carbon is delocalized and resonates
between the three covalent bonds. This only accounts for a 100-fold increase in
electrical and thermal conductivity in a direction parallel to the sheets, as compared
to the perpendicular direction. The weak intersheet bonding explains the softness
of graphite in sharp contrast to diamond. Graphite, hence finds application as a
lubricant. In the'other crystal form of carbon namely diamond, each atom forms

four covalent bonds and produce a three dimensional network. It isa good electrical
sulator,
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(SOLVED PROBLEMS)
+ructure and its lattice parameter is 3.6 A, Fing
1. Copper has FCC structure
the atomic radius. |
Given data
Lattice parameter of copper(a) = 3.6A
Solution
av2
Atomic radius of copper T’ = e
_ 36 10710x 2
B 4
= 1273x10%m
r = 12734
2.  Silver has FCC structure and its atomic radius is 1.414 A. Find the
spacing of (110) plane '
Given data
atomic radius r = 1414A.
r = 1414x1010m

Solution

For FCC, lattice constant a

Therefore . a

a

The inplanar spacing between
planes of Miller indices (hkl)

Therefore the spacing of the
plane with Miller indices (110)

d
3.

4r

V2

" 4x1414 x 10710

V2

4x10710py
We know in the case of cubic system

a
vhZ + k2 4 02
4 x 10710
V1241240

2.828 x 10-10 1

Iron is BCC with atomic radius 0.123A. Find the lattice constant and

also the volume of the unit cell.
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Given data r
Solution

For BCC Lattice, a

a

5.49
0.123A = 0.123x10-10m
4r
V3
4 %0123 x 10710
V3

0284 x 1010y

- Volume of the unit cell (V) = a3 = (0.284 y 10—10)3

2.2906 x 10732 3

4. Theinterplanar distance between the planes of a crystal is 2.9 At
is found that first order Bragg’s reflection occurs at an angle of 9.5°.
What is the wavelength of x - rays ?

Given data d
n

Solution
From Bragg’s law n )
Therefore A
A
A

2.9 A

2.9 x 1010y
9.5°

1

2d sinf

2dsin0 i 2 %29 x 10_10 X si1'19.5D
n i 1

0.957 x 1071%m

0.957A

5. The Bragg angle corresponding to the first order reflection from
(110) plane is a crystal is 32° When X - rays of wavelength of 1.7 Ais

used. Find the interatomic spacing in a cubic lattice.

Given data
(hkl)

Therefore dy10

A

Also n

"

(110)

a

—

N
17A = 1.7x10%m

32°
1
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Solution _ .
For a Cubic lattice, the lattice constant ‘a’, and interplanar spacing ‘¢ for ,

plane of Miller indice (hkl) is given by

a
Uz
dhkl = (h2 + k2 + [2)
Subsituting the above values in
Bragg’s Law, 2dsinf = ni

2x% sin32° = 17x1071°

J2 x17x10710
2 sin32

a = 2268 x1010m

Therefore a

6. CopperhasFCC structure and atomic radius 1.278 A. The atomic weight
of copper is 63.54. Avagadro’s number is 6.023x1026 kg.mole-1,
Given data

atomic radius r = 1278A = 1278x10¥m
Atomic weight of copper M = 63.54
Avagadro’s number N = 6.023 x 1026 kg.mole~!

Solution
In FCC No of atoms per unit cell n =4
. 4r
Lattice constant a = E
4x1278 x 10710
% 2
a = 3615X1010my
We know the density of copper p = ;ii

4 x 6354
= (3615 x 10‘1")3 x 6.023 x 10%

25416
0.0285

8.932 x 103 Kgm3
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