

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade **Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai**

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EEB201 DC Machines and Transformers

II YEAR / III SEMESTER

Unit 1 – DC Generator

Topic 5: Characteristics of DC generator

What We'll Discuss **TOPIC OUTLINE**

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

A Case Characteristics of DC Generator **Practical Implementation** Assessment

A CASE

- why?

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

16.08.2023

3/15

Identify the types of Generating stations

Different types of generators are used in different places,

Characteristics – DC Generator

The following are the three most important characteristics in a D.C. generator:

- 1. Open Circuit Characteristics (Eo/IF)
- 2. Internal Characteristics (E/Ia)
- 3. External Characteristics (V/Ia)

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

Critical Resistance for shunt Generator

- The value of resistance of shunt field winding beyond which the self generator fails to build up its voltage is known as "critical resistance" at a given speed it is the maximum field resistance with which the shunt generator excite.
- Shunt generator will build up voltage only if field circuit resistance is less than critical field resistance. •

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

O.C.C. at Different Speeds

- If we are given O.C.C. of a generator at a constant speed N_1 then we can easily draw the O.C.C. at any other constant speed N_2
- Here we are given O.C.C. at a constant speed N1.
- It is desired to find the O.C.C. at constant speed N_2 (it is assumed that $n_1 < N_{2}$)For constant excitation, $E \alpha N$.
- $E_2/E_1 = N_2/N_1$

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

Critical Speed (NC)

The critical speed of a shunt generator is the minimum speed below which it fails to excite.

Therefore, Speed & Critical resistance

In order to find critical speed, take any convenient point C on excitation axis and erect a perpendicular so as to cut R_{sh} and R'_{sh} lines at points B and A respectively. Then,

> $BC/AC = N_C/N$ or $N_C = N \times (BC/AC)$

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

Conditions for Voltage Build-Up of a Shunt Generator

The necessary conditions for voltage build-up in a shunt generator are:

(i) There must be some residual magnetism in generator poles.

(ii) The connections of the field winding should be such that the field currentmagnetism.

(iii) The resistance of the field circuit should be less than the critical resistance. In other words, the speed of the generator should be higher than the critical speed.

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

Characteristics of Separately Excited D.C. Generator

OCC

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

Internal & External

Characteristics of Shunt Generator

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

16.08.2023

Current

E_o ξ P., 0 A ----¥ I,

Characteristics of Series Generator

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

Compound Generator Characteristics

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

16.08.2023

12

Name the three most important characteristics in a D.C. generator

List the necessary conditions for voltage build-up in a shunt generator:

(iii)

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

Practical Implementation

In the Laboratory, Practically conduct experiment on DC generator set and obtain its characteristics

U could see the characteristics obtained as discussed in the class

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

16.08.2023

19EEB201/DCMT/C.Ramakrishnan/ASP/EEE

16.08.2023

THANK YOU