

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EEB201 DC Machines and Transformers

II YEAR / III SEMESTER

Unit 1 – DC Generator

Topic 3: EMF Equation of DC generator

(S)

What We'll Discuss

TOPIC OUTLINE

EMF Equation
Assessment

EMF Equation of a generator

Let

- $\Phi = \text{flux/pole in Weber}$
- \blacksquare Z = Total number of armature conductors = No. of slot \times No. of conductors/slot
- P= No. of generator poles
- \blacksquare A = No. of parallel paths in armature
- N= Armature rotation in revolutions per minute (r. p. m)
- E= e.m.f induced in any parallel path in armature
- Generated e.m.f E_g = e.m.f generated in any one of the parallel paths i.e E

Average e.m.f generated/conductor = $\underline{d} \Phi$ volt

dt

Now, flux cut/conductor in one revolution

$$d \Phi = \Phi P wb$$

EMF Equation of a generator

No. of revolutions/ $\sec = N/60$

 \therefore Time for one revolution, dt= 60 /N sec

According to Faraday's Law of electro magnetic induction

E.M.F generated/conductor =
$$\underline{d\Phi}$$
= $\underline{\Phi}$ PN volts dt 60

No. of conductors (in series) in one parallel path= \mathbb{Z} / A

∴ E.M.F generated/path=
$$\Phi$$
 PN × Z Volts 60 A

∴ Generate E.M.F,
$$E_g = \Phi Z N \times P$$
 Volts 60 A

For

- i) Wave winding A = 2
- ii) Lap winding A = P

Recall the Terms

- 1. Z =-----
- 2. P= -----
- 3. A =-----

THANK YOU