HEXAGONAL CLOSED PACKED STRUCTURE

- It consists of three layers of atoms.
- The bottom layer has six corner atoms and one face centred atom.
- The middle layer has three full atoms.
- The upper layer has six corner atoms and one face centred atom.
- Each and every corner atom contributes $1 / 6$ of its part to one unit cell.
- ine number or total atoms contributed by the corner atoms of both top and bottom layers is $1 / 6 \quad 12=2$.
- The face centred atom contributes $1 / 2$ of its part to one unit cell.
- Since there are 2 face centred atoms, one in the top and the other in the bottom layers, the number of atoms contributed by face centred atoms is $1 / 22=1$.
- Besides these atoms, there are 3 full atoms in the middle layer.
- Total number of atoms present in an HCP unit cell is
$2+1+3=6$.

CO-ORDINATION NUMBER (CN)

- The face centered atom touches 6 corner atoms in its plane.
- The middle layer has 3 atoms.
- There are three more atoms, which are in the middle layer of the unit cell.
- Therefore the total number of nearest neighbours is $6+3+3=12$.

ATOMIC RADIUS (R)

- Consider any two corner atoms.
- Each and every corner atom touches each other. Therefore a $=2$ r.
i.e., The atomic radius, $\quad r=a / 2$

ATOMIC PACKING FACTOR (APF)

$$
\text { APF }=\mathrm{v} / \mathrm{V}
$$

$$
\mathrm{v}=6 \quad 4 / 3 \mathrm{r}^{3}
$$

Substitute $\mathrm{r}=\mathrm{a} / 2$

$\mathrm{AB}=\mathrm{AC}=\mathrm{BO}=‘ \mathrm{a}$ '. $\mathrm{CX}=\mathrm{c} / 2$ where c height of the hcp unit cell.
Area of the base $=6$ area of the triangle $\mathrm{ABO}=6$
$1 / 2 \mathrm{AB}$ OO
Area of the base $=61 / 2 \mathrm{a} \quad \mathrm{OO}$
In triangle O'OB
|O'OB 30

$$
\begin{aligned}
& \cos 30^{\circ}=\frac{\mathrm{OO}^{\prime}}{\mathrm{BO}} \frac{\mathrm{OO}^{\prime}}{\mathrm{a}} \\
& \mathrm{OO}=\mathrm{a} \cos 30^{\circ}=\mathrm{a} \sqrt{3 / 2}
\end{aligned}
$$

Now, substituting the value of OO ,
$\sqrt{3 / 2} \quad \frac{3 \sqrt{3} a^{2}}{}$

Area of the base $=6 \quad 1 / 2 \quad$ a
$\mathrm{V}=$ Area of the base \times height
$V=\frac{3 \sqrt{3} a^{2}}{2} \times c$
$\therefore A P F=\frac{v}{V}=\frac{\pi a^{3}}{\frac{3 \sqrt{3} \mathrm{a}^{2} \mathrm{c}}{2}}$
$\therefore \mathrm{APF}=\frac{2 \pi \mathrm{a}^{3}}{3 \sqrt{3} \mathrm{a}^{2} \mathrm{c}}=\frac{2 \pi}{3 \sqrt{3}} \frac{\mathrm{a}}{\mathrm{c}}$

Determination of c/a ratio:

In the triangle $A B A$,
$\operatorname{Cos} 30^{\circ}=+$ A $^{\prime}$.
AB
30
$\mathrm{AA}=\mathrm{AB} \cos 30^{\circ}=\mathrm{a} 3 / 2$
But AX $=\mathbf{2} / \mathbf{3} A A==^{2}-\frac{B D}{2}$
i.e. $\mathbf{A X}=\sqrt[{\frac{a}{\sqrt[3]{ }}}]{ }$

In the triangle
$\mathrm{AXC}, \mathrm{AC}^{2}=$
$\mathrm{AX}^{2}+\mathbf{C X}^{2}$
Substituting the values of AC, AX and CX,

$$
\begin{aligned}
& a^{2}=\left(\frac{a}{\sqrt{3}}\right)^{2}+\left(\frac{c}{2}\right)^{2} \\
& a^{2}=\frac{a^{2}}{3}+\frac{c^{2}}{4} \\
& \frac{c^{2}}{4}=a^{2}-\frac{a^{2}}{3} \\
& \frac{c^{2}}{4}=a^{2}\left(1-\frac{1}{3}\right) \\
& \frac{c^{2}}{a^{2}}=\frac{8}{3} \\
& \frac{c}{a}=\sqrt{\frac{8}{3}}
\end{aligned}
$$

Now substituting the value of c/a to calculate APF of an hcp unit cell,

$$
\begin{aligned}
& \begin{aligned}
\mathrm{APF} & =\frac{2 \pi}{3 \sqrt{3}} \sqrt{\frac{3}{8}} \\
& =\frac{2 \pi}{3 \sqrt{3}} \frac{\sqrt{3}}{2 \sqrt{2}} \\
\therefore \mathrm{APF} & =\frac{\pi}{3 \sqrt{2}}=0.74
\end{aligned}
\end{aligned}
$$

