
SNS COLLEGE OF TECHNOLOGY

Autonomous Institution, Affiliated to Anna University)
Coimbatore - 641035.
Internal Assessment- I
Academic Year2023-2024(Odd)

First Semester
 23MAT101-MATRICES AND CALCULUS
 (REGULATION 2023)
 (Common to all branches)

Time:1.30Hours

$\text { PART - A(5 } \times 2=10 \text { MARKS })$ ANSWERALLQUESTIONS				BLOOMS (Rem)
1.	Dissect the characteristic equation of the matrix $\left[\begin{array}{ccc}7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5\end{array}\right]$		CO1	
2.	Find the Eigen value of $\operatorname{adj}(\mathrm{A})$ if $A=\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 1\end{array}\right]$		CO1	(Und)
3.	If 3 and 15 are two eigen values of $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$, find $\|\mathrm{A}\|$, without expanding the determinant.		CO1	(Rem)
4.	Infer the matrix form of the quadratic form of $x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}$		CO 2	(Rem)
5.	Discuss the rank, index, signature, and nature of $y_{1}^{2}+3 y_{2}^{2}-4 y_{3}^{2}$		CO 2	(Und)
	PART - B (13+13+14= 40 MARKS) ANSWERALLQUESTIONS			
6.	a)i)	Interpret the Eigen value and Eigen vector of $A=\left[\begin{array}{ccc}11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6\end{array}\right]$	CO1	$\begin{gathered} (\mathrm{App}) \\ (10) \end{gathered}$
	ii)	List out the applications of Eigen value in real life.	CO1	(App) (3)
	b)	(or)		
		Test whether the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 1 \\ 1 & 0 & -2\end{array}\right]$ satisfies its own characteristics equation and also compute its A^{4} and A^{-1}.	CO1	$\begin{gathered} (\mathrm{App}) \\ (13) \end{gathered}$

7.	a)	Diagonalize the matrix $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$ by means of orthogonal transformation.	CO2	(App) (13)
		(or)		
	b)	Obtain an orthogonal transformation which will transform the quadratic form $x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}$ into sum of squares.	CO2	(App) (13)
8.	a)	What is the number of femalesin each class after 2,4 , and 6 yearsif each class initially consists of 400 females each. Let the Leslie matrix be $\left[\begin{array}{ccc}0 & 2.3 & 0.4 \\ 0.6 & 0 & 0 \\ 0 & 0.3 & 0\end{array}\right]$ and find its distribution vector and its rate of change.	CO1	$\begin{aligned} & \text { (Ana) } \\ & (144) \end{aligned}$
		(or)		
	b)	Reduce the quadratic form $2 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}-4 x_{2} x_{3}-2 x_{1} x_{3}$ to canonical form by orthogonal reduction. Determine its nature, rank, signature, index and find a set of non-zero value for x_{1}, x_{2}, x_{3} for which the above quadratic form is zero.	CO 2	(App) (14)

