

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

(An Autonomous Institution) Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF MEHANICAL ENGINEERING

16ME401 FINITE ELEMENT ANALYSIS IV YEAR VII SEM

UNIT V ISOPARAMETRIC FORMULATION

TOPIC – Isoparametric elements-Example Problem 1

The relationship between a global coordinate *X* and a local coordinate *x*.

19-Nov-20 SNSCT/ MECH/FEA/VII SEM / Dr . M.SUBRAMANIAN / PROFESSOR / MECHANICAL ENGINEERING

Node j

19-Nov-20

The relationship between the local coordinate *x* and the natural coordinate ε.

SNSCT/MECH/FEA/VII SEM / Dr. M.SUBRAMANIAN / PROFESSOR / MECHANICAL ENGINEERING

A Fin Problem

Node j

(a) Parent element

Isoparametric Formulation

For the isoparametric four noded quadrilateral element shown in figure, determine the co-ordinates of point P which has local co ordinates ϵ =0.5 and $\eta=0.5$

SNSCT/MECH/FEA/VIISEM/Dr.M.SUBRAMANIAN/PROFESSOR/MECHANICAL ENGINEERING

Solution: γ Given data: Natural co-ordinates of point P (1,4) ε=0.5 η=0.5 $(x_4, y_4)_4$ Cartesian co-ordinates of points 1, 2, 3 and 4, $x_1 = 1;$ $y_1 = 1$ $x_2 = 5; \quad y_2 = 1$ $x_3 = 6; \quad y_3 = 6$ (1,1)(x₁,y₁) $y_4 = 4$ $x_4 = 1;$

To determine: Cartesian co-ordinates of the point P (x , y)

Shape functions for quadrilateral element are,

Substitute ϵ and η values in the above equations,

$$N_1 = \frac{1}{4}(1-\epsilon)(1-\eta) \implies N_1 = \frac{1}{4}(1-0.5)(1-0.5) = 0.0625$$

$$N_2 = \frac{1}{4}(1+\epsilon)(1-\eta) \implies N_2 = \frac{1}{4}(1+0.5)(1-0.5) = 0.1875$$

$$N_3 = \frac{1}{4}(1 + \epsilon)(1 + \eta) \implies N_3 = \frac{1}{4}(1 + \epsilon)(1 + \eta)$$

$$N_4 = \frac{1}{4}(1-\epsilon)(1+\eta) \implies N_4 = \frac{1}{4}(1-0.5)(1+0.5) = 0.1875$$

Co-ordinate,
$$x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$$

= 0.0625 × 1 + 0.1875 × 5 + 0.5625 × 6 + 0.1
 $x = 4.5625$

Co-ordinate,
$$y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4$$

= 0.0625 × 1 + 0.1875 × 1 + 0.5625 × 6 + 0.1875 × 4
 $y = 4.375$

Result: The cartesian co-ordinates of the point P are (4.5625, 4.375).

19-Nov-20

SNSCT/MECH/FEA/VIISEM/Dr.M.SUBRAMANIAN/PROFESSOR/MECHANICAL ENGINEERING

x

$$+0.5$$
) (1 + 0.5) = 0.5625

875 × 1

19-Nov-20

Formula

 $N_1 = \frac{1}{\Lambda} (1 - \varepsilon)(1 - \eta),$ $N_2 = \frac{1}{4}(1+\varepsilon)(1-\eta)$ $N_3 = \frac{1}{4}(1+\varepsilon)(1+\eta),$ $N_4 = \frac{1}{4}(1-\varepsilon)(1+\eta)$

 $x = N_1 x_1 + N_2 x_2 + N_3 x_3 + N_4 x_4$

 $y = N_1 y_1 + N_2 y_2 + N_3 y_3 + N_4 y_4$

SNSCT/MECH/FEA/VII SEM / Dr . M.SUBRAMANIAN / PROFESSOR / MECHANICAL ENGINEERING

Thank you

19-Nov-20

SNSCT/ MECH/FEA/VII SEM/Dr.M.SUBRAMANIAN/PROFESSOR/ MECHANICAL ENGINEERING

