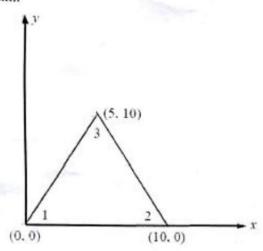


SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

(An Autonomous Institution)



DEPARTMENT OF MECHANICAL ENGINEERING

16ME401 Finite Element Analysis

Evaluate the stiffness matrix for the elements shown in Figure 0. The coordinates are given in units of millimeters. Assume plane stress conditions. Let E =210GPa, μ = 0.25, and t = 10 mm.

$$(x_1, y_1) = (0,0)$$

 $(x_1, y_2) = (10,0)$
 $(x_3, y_3) = (5,10)$
To Find:-
 $[E] = [B]^T [0] [B] \cdot A \cdot E$

$$A = \frac{1}{2} \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{bmatrix} = A = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 10 & 0 \\ 1 & 5 & 10 \end{bmatrix}$$

ster ii) Strain Displacement matrix

$$B = \frac{1}{2\theta} \begin{bmatrix} 9_1 & 0 & 9_2 & 0 & 9_3 & 0 \\ 0 & 7_1 & 0 & 7_2 & 0 & 7_3 \\ 7_1 & 7_1 & 7_2 & 9_2 & 7_3 & 9_3 \end{bmatrix}$$

$$Y_1 = X_3 - 3 = 5 - 1^- = -5$$
 $Y_2 = X_1 - X_3 = 0 - 5 = -5$
 $Y_3 = X_2 - X_1 = 10 - 0 = 10$

$$\begin{bmatrix} B \end{bmatrix} = \frac{1}{2 \times 50} \times 5 \quad \begin{bmatrix} 0 & -1 & 0 & -1 & 0 & 2 \\ -1 & -2 & -1 & 2 & 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} B \end{bmatrix} = \frac{1}{20} \begin{bmatrix} -2 & 0 & 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 2 \\ -1 & -2 & -1 & 2 & 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} B \end{bmatrix}^{T} = \frac{1}{20} \begin{bmatrix} -2 & 0 & -1 \\ 0 & -1 & -2 \\ 2 & 0 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

Stress strain matrix [0] for plane stress

$$[0] = \frac{2.1 \times 10^{5}}{1 - 0.25^{2}} [0.25] \begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1.5 \end{bmatrix}$$

$$[P] = 56000 \begin{vmatrix} 4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1.5 \end{vmatrix}$$

$$[F] = [B]^{T} [D] [B] \cdot A \cdot t$$

$$= [P] [B]$$

$$= 56 \times 10^{3} \times \frac{1}{20} \begin{bmatrix} 4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1.5 \end{bmatrix} \times$$

$$\begin{bmatrix} -2 & 0 & 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 2 \\ -1 & -2 & -1 & 2 & 2 & 0 \end{bmatrix}$$

$$= 2800 \begin{bmatrix} -8 & -1 & 8 & -1 & 0 & 2 \\ -2 & -4 & 2 & -4 & 0 & 8 \\ -1.5 & -3 & -1.5 & 3 & 3 & 0 \end{bmatrix}$$

$$= \frac{2800}{2} \begin{bmatrix} -2 & 0 & -1 \\ 0 & -1 & -2 \\ 2 & 0 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} -8 & -1 & 8 & -1 & 0 & 2 \\ -2 & -4 & 2 & -4 & 0 & 8 \\ -1.5 & -3 & -1.5 & 3 & 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 17.5 & 5 & -14.5 & -1 & -3 & -4 \\ 5 & 10 & 1 & -2 & -6 & -8 \\ -14.5 & 1 & 17.5 & -5 & -3 & 4 \\ -1 & -2 & -5 & 10 & 6 & -7 \\ -3 & -6 & -3 & 6 & 6 & 0 \\ -4 & -8 & 4 & -8 & 0 & 16 \end{bmatrix}$$