@ SNS COLLEGE OF TECHNOLOGY b
e (Autonomous) e
COIMBATORE-35

Syntax Directed Definitions &Intermediate
Languages

4 source 4 source

3 target 3 target
L.val = 19 language mactincs language mu?;lincs

E.val =19\ n .\‘\» .\
o cm B -

optimizer /

E.val=15 + T.wval=4 X \

\
¢ \\
| l) N % / B2 v
T.val =15 Fval=4 b \\\:- = e -
/ ‘ \ | -: N\ \w})’/’ .///‘
Towal=3 . Foval=5 digit.lexval = 4 / /\\‘ / \-
/
/

| | =
Fuval=3 digit.lexval = 5 l- - .

|

digit.lexval = 3 4 front ends+ 4 fropl cfnds“r
4*3 optimizers+ | optimizers+
4*3 code generators 3 code generators

19CSB301/ATCD-Unit IV/SDD&ICG 11
/B.Vinodhini

-~ -
“»
FIT IO S

Syntax Directed Definitions _———

The Structure of our Compiler

Characte:r__> ¥ edieilaiiime Token | Syntax-directed | Java
stream y stream translator bytecode ;
A A R -
/, ’, \\
/’ ’ ‘ \\ :
R4 47 \
’ 4)
’ 4 &
/ ’ 5
2 z A y
Lex specification Y.acc speciffcation JVM specification
with semantic rules |

19CSB301/ATCD-Unit IV/SDD&ICG 12
/B.Vinodhini

-~ -~
B
FIT IO S

Syntax Directed Definitions T

Syntax-Directed Translation

Grammar symbols are associated with attributes to associate
information with the programming language constructs that they
represent.

Values of these attributes are evaluated by the semantic rules associated
with the production rules.

Evaluation of these semantic rules:
— may generate intermediate codes
— may put information into the symbol table
— may perform type checking
— may issue error messages
— may perform some other activities
— 1n fact, they may perform almost any activities.

An attribute may hold almost any thing.

— astring, a number, a memory location, a complex record.

19CSB301/ATCD-Unit IV/SDD&ICG 13
/B.Vinodhini

#8& Syntax Directed Definitions & Translatio%

Scheme

* When we associate semantic rules with productions, we use two
notations:

— Syntax-Directed Definitions
— Translation Schemes

* Syntax-Directed Definitions:
- give high-level specifications for translations
- hide many implementation details such as order of evaluation of semantic actions.
-~ We associate a production rule with a set of semantic actions, and we do not say when they
will be evaluated.
* Translation Schemes:

- 1indicate the order of evaluation of semantic actions associated with a production rule.

- In other words, translation schemes give a little bit information about implementation
details.

19CSB301/ATCD-Unit IV/SDD&ICG 14
/B.Vinodhini

- [
)
FIT o=

Syntax Directed Definitions T

Syntax-Directed Definitions

A syntax-directed definition is a generalization of a context-free
grammar in which:
— Each grammar symbol 1s associated with a set of attributes.

— This set of attributes for a grammar symbol 1s partitioned into two subsets called
synthesized and inherited attributes of that grammar symbol.

— Each production rule 1s associated with a set of semantic rules.

Semantic rules set up dependencies between attributes which can be
represented by a dependency graph.

This dependency graph determines the evaluation order of these
semantic rules.

Evaluation of a semantic rule defines the value of an attribute. But a
semantic rule may also have some side effects such as printing a value.

19CSB301/ATCD-Unit IV/SDD&ICG 15
/B.Vinodhini

T rionis

-
s Annotated Parse Tree e

* A parse tree showing the values of attributes at each node is called
an annotated parse tree.

* The process of computing the attributes values at the nodes is called
annotating (or decorating) of the parse tree.

* Of course, the order of these computations depends on the
dependency graph induced by the semantic rules.

19CSB301/ATCD-Unit IV/SDD&ICG 16
/B.Vinodhini

Syntax Directed Definitions

* Ina syntax-directed definition, each production A—a is associated
with a set of semantic rules of the form:

b=flc,c,...c) where f is a function,
and b can be one of the followings:

»

8 bisasynthesized attribute of Aandc ¢, ...,c, are attributes of the
grammar symbols in the production (A—a).
OR

8 b isan inherited attribute one of the grammar symbols in o (on the

right side of the production), and ¢ ¢, ...,c_are attributes of the

grammar symbols in the production (A—a).

19CSB301/ATCD-Unit IV/SDD&ICG 17
/B.Vinodhini

4

@ Syntax Directed Definitions-
Attribute Grammar

FITI o=
WWW.ARIgroups.com

* So, a semantic rule b=ffc,c,...,c) indicates that the attribute b

depends on attributes ¢ ,c.,...,C..
i g o n

» In a syntax-directed definition, a semantic rule may just evaluate
a value of an attribute or it may have some side effects such as
printing values.

» An attribute grammar is a syntax-directed definition in which the
functions in the semantic rules cannot have side effects (they can
only evaluate values of attributes).

19CSB301/ATCD-Unit IV/SDD&ICG 18
/B.Vinodhini

@
¢

'

1:!

?
hT

o)
% ::
3 3 FIT IO

" Syntax Directed Definitions -Example ===

Production Semantic Rules

L — E return print(E.val)

E—E +T E.val =E .val + T.val
E—T E.val = T.val

31, *F T.val =T,.val * F.val
T—F T.val =F.val
F—(E) F.val = E.val

F — digit F.val = digit.lexval

» Symbols E, T, and F are associated with a synthesized attribute val.

» The token digit has a synthesized attribute lexval (it is assumed that it is
evaluated by the lexical analyzer).

19CSB301/ATCD-Unit IV/SDD&ICG 19
/B.Vinodhini

Syntax Directed Definitions
Annotated Parse Tree Example

[nput: 5+3*4 L
N
E.val=17 return
//I\
E.val=5 -+ T.val=12
i
T.vlal=5 Twval=3 * F.val=4
F.vlal=5 F.vlal=3 digil.lexval=4

digit.lexval=5 digit.lexval=3

19CSB301/ATCD-Unit IV/SDD&ICG
/B.Vinodhini 0

-~

Syntax Directed Definitions > ¢ =

Www.sndgroups.com

Dependency Graph
Input: 5+3%4 / L
E.val=17
E.val=5 T.val=12
T /\
T.val=5 T.val=3 F.val=4
I T T
F.val=5 F.val=3 digit.lexval=4
I I
digit.lexval=5 digit.lexval=3

19CSB301/ATCD-Unit IV/SDD&ICG 11
/B.Vinodhini

e é g
L

N ._,._‘_.A’

L~

<

|

2]

AL - %)
)

s

Intermediate Code Generation

» Facilitates refargeting: enables attaching a back
end for the new machine to an existing front end

Intermediate Targ;t
—> Front end e P > Back end —>machine
code

* Enables machine-independent code optimization

19CSB301/ATCD-Unit IV/SDD&ICG 12
/B.Vinodhini

Intermediate Representations

Graphical representations (e.g. AST)

Postfix notation: operations on values stored
on operand stack (similar to JVM bytecode)

Three-address code: (e.g. triples and quads)
X =yopz
Two-address code:

X:=0py
which is the same as x :=x op y

19CSB301/ATCD-Unit IV/SDD&ICG
/B.Vinodhini

13

[V o P

‘»\) - t
=] 2
. 3
oy
TF o =
.{_\...--b -..—,I_j.-

NF

L T

Syntax Directed Translation of
Abstract Syntax Trees

Production | Semantic Rule

S—id:=E | Snptr:=mknode("=
E—E +E,| Enptr:=mknode("+ , E,.nptr, E,.nptr)
E—E *E,| Enptr:=mknode("* , E,.nptr, E,.nptr)
E—-E, | Enptr:=mknode(uminus , E,.nptr)
E-(E)) | Enptr:=E nptr

E-id Enptr = mkleaf(id, id.entry)

19CSB301/ATCD-Unit IV/SDD&ICG
/B.Vinodhini

, mkleaf(id, id entry), E.nptr)

Abstract Syntax Tree

-~

a*(b+c)

-~

!

-

>

FITI o=
Www.sndgroups.com

-~

/
/

7’
”
o

o

\
Pro: easy restructuring of code ‘\\
and/or expressions for L8
intermediate code optimization .
Cons: memory intensive b

19CSB301/ATCD-Unit IV/SDD&ICG
/B.Vinodhini

€ [hemmanees

15

Abstract Syntax Tree Versus DAG

a=b*-c+b*-¢

Q¢ v

uminus

b uminus

Tree

+
%
uminus
¢
DAG

19CSB301/ATCD-Unit IV/SDD&ICG
/B.Vinodhini

16

-~ -
“»
FIT IO S

Postfix Notation S

a=b*-C+b*-C

QY

a b cuminus * b ¢ uminus * + assign

Postfix notation represents
operations on a stack

Pro: easy to generate
Cons: stack operations are more
difficult to optimize

19CSB301/ATCD-Unit IV/SDD&ICG

/B.Vinodhini

Bytecode (for example)

iload 2 // push b
iload 3 // push ¢
ineg // uminus
imul /] *

iload 2 // push b
iload 3 // push c
ineg // uminus
imul /] *

iadd /] +
istore 1 // store a

17

- -

>

Three Address Code S

=b*-c+b*-c

@

=

= C tl := - ¢
t2 :=b * tl t2 := b * t1
t3 = -c¢ t5s := t2 + t2
t4 = b * t3 a = t5
t5 := t2 + t4
a = t5
Linearized representation Linearized representation

of a syntax tree of a syntax DAG

19CSB301/ATCD-Unit IV/SDD&ICG 18
/B.Vinodhini

Three address Statements

Assignment statements: x :=yopz,x :=opy
[ndexed assignments: x :=y[i], x[i] :=y
Pointer assignments: x := &y, x :=*y, *x :=y
Copy statements: x :=y

Unconditional jumps: goto lab

Conditional jumps: 1 f x relop y goto lab

Function calls: paramx... call p, n
returny

19CSB301/ATCD-Unit IV/SDD&ICG 19
/B.Vinodhini

@ Syntax Directed Translation into
Three address code

Productions Synthesized attributes:
S—>id:=E S.code three-address code for S
| while £do S S.begin label to start of S or nil

E->E+E S.after label to end of S or nil

F*E E.code three-address code for £

-E E.place a name holding the value of £

(E)

id

e /'gen(E.place "= E,place '+ E,.place)

Code generation — 5 R R § D

19CSB301/ATCD-Unit IV/SDD&ICG 20
/B.Vinodhini

@ |mplementation of Three address
Statements -Quadruples

Op Argl | Arg2 Res
(0) | uminus C tl
(1) * b tl t2
(2) | uminus e t3
(3) ¥ b t3 t4
(4) + t2 t4 t5
(5) = t5 a

Quads (quadruples)

19CSB301/ATCD-Unit IV/SDD&ICG 2
/B.Vinodhini

@
é.
&5

@ Implementation of Three address
Statements -Triples

'

1:!

?
hT

Op Argl Arg?2
(0) uminus C
(1) Y b 0)
(2) uminus C
(3) . b (2)
4) L (1) (3)
(5) = a (4)
Triples

19CSB301/ATCD-Unit IV/SDD&ICG 23
/B.Vinodhini

[V o
Gl R
- "N
=] 2
oy
{ ! o
e 2o 2
O
L

Implementation of Three address

Statements —Indirect Triple

i Stmt
(0) (14)
(1) (15)
(2) (16)
3) (17)
(4) (18)
(3) (19)

Program

Z Op Argl | Arg2
»| (14) |uminus C
>| (15) * b (14)
> (16) |uminus C
»1 (17) " b (16)
> (18) + (15) (17)
> (19) = a (18)

19CSB301/ATCD-Unit IV/SDD&ICG
/B.Vinodhini

Triple container

24

-~ -
)

FITI o=
Www.sndgroups.com

Summarization

19CSB301/ATCD-Unit IV/SDD&ICG 75
/B.Vinodhini

