

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

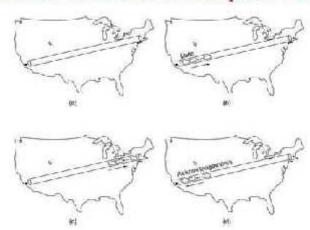
19ECT301- COMMUNICATION NETWORKS

III YEAR/ V SEMESTER

UNIT 3 TRANSPORT LAYER & APPLICATION LAYER

TOPIC - PERFORMANCE ISSUES

Performance Issues



Performance Problems in Computer Networks
Network Performance Measurement
System Design for Better Performance
Fast TPDU Processing
Protocols for Gigabit Networks

Performance Problems in Computer Networks

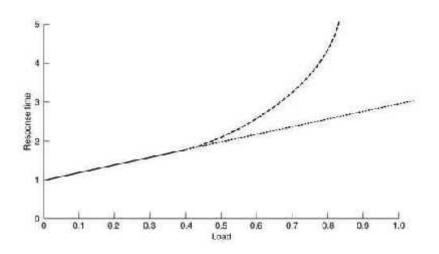
The state of transmitting one megabit from San Diego to Boston (a) At t = 0, (b) After 500 µsec, (c) After 20 msec, (d) after 40 msec.

Network Performance Measurement

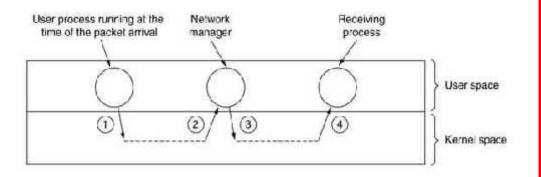
The basic loop for improving network performance.

- 1. Measure relevant network parameters, performance.
- 2. Try to understand what is going on.
- 3. Change one parameter.

System Design for Better Performance


Rules:

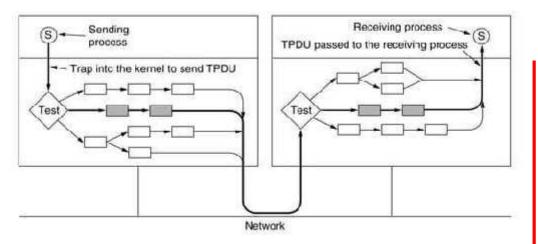
- CPU speed is more important than network speed.
- Reduce packet count to reduce software overhead.
- Minimize context switches.
- Minimize copying.
- You can buy more bandwidth but not lower delay.
- Avoiding congestion is better than recovering from it.
- Avoid timeouts.



System Design for Better Performance (2)

Response as a function of load.

System Design for Better Performance (3)



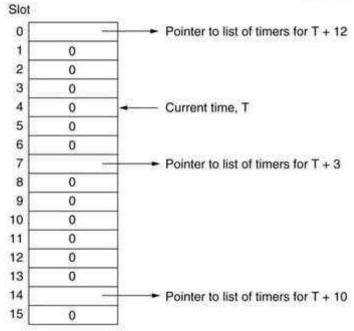
Four context switches to handle one packet with a user-space network manager.

Fast TPDU Processing

The fast path from sender to receiver is shown with a heavy line.

The processing steps on this path are shaded.

Fast TPDU Processing (2)


S	ource port	Destination por
	Sequer	ice number
	Acknowledg	gement number
Len	Unused	Window size
(Checksum	Urgent pointer

VER.	IHL	TOS	Total length
Identification			Fragment offset
TTL		Protocol	Header checksum
		Source	address
		Destination	n adcress
			b)

(a) TCP header. (b) IP header. In both cases, the shaded fields are taken from the prototype without change.

Fast TPDU Processing (3)

A timing wheel

THANK YOU