

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

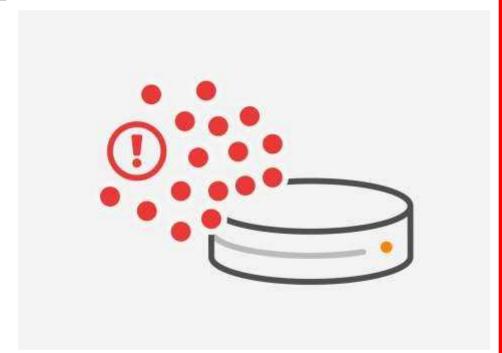
Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

19ECT301-COMMUNICATION NETWORKS III YEAR/ V SEMESTER

UNIT 3- TRANSPORT LAYER & APPLICATION LAYER

TOPIC - CONGESTION CONTROL



CONGESTION IN NETWORK-

Congestion refers to a network state where-

The message traffic becomes so heavy that it slows down the network response time.

CONGESTION IN NETWORK-

- □ Congestion is an important issue that can arise in Packet Switched Network.
- □ Congestion leads to the loss of packets in transit.
- □ So, it is necessary to control the congestion in network.
- □ It is not possible to completely avoid the congestion.

CONGESTION CONTROL

Congestion control refers to techniques and mechanisms that can-

- ☐ Either prevent congestion before it happens
- □Or remove congestion after it has happened

TCP CONGESTION CONTROL

TCP reacts to congestion by reducing the sender window size.

The size of the sender window is determined by the following two factors-

- ☐ Receiver window size
- **□** Congestion window size

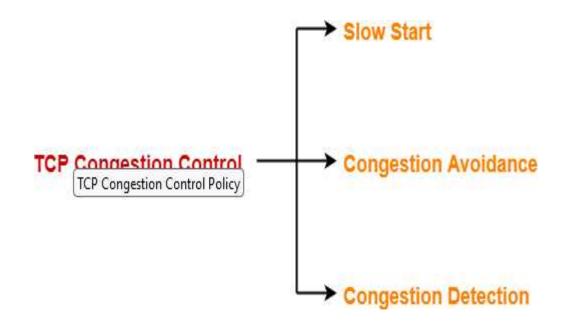
1. RECEIVER WINDOW SIZE

- Sender should not send data greater than receiver window size.
- Otherwise, it leads to dropping the TCP segments which causes TCP Retransmission.
- So, sender should always send data less than or equal to receiver window size.
- Receiver dictates its window size to the sender through TCP Header.

CONGESTION WINDOW

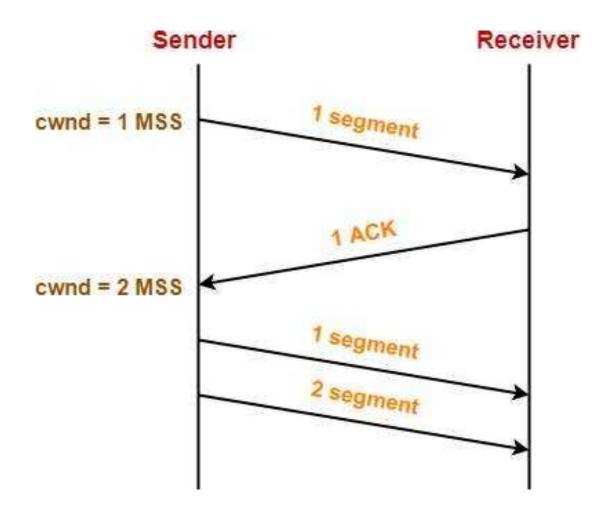
- ☐ Sender should not send data greater than congestion window size.
- ☐ Otherwise, it leads to dropping the TCP segments which causes TCP Retransmission.
- ☐ So, sender should always send data less than or equal to congestion window size.

CONGESTION WINDOW


□ Sender window size = Minimum (Receiver window size, Congestion window size)

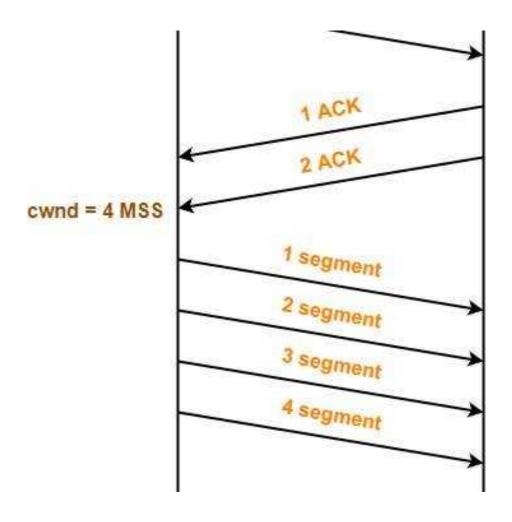
TCP CONGESTION POLICY

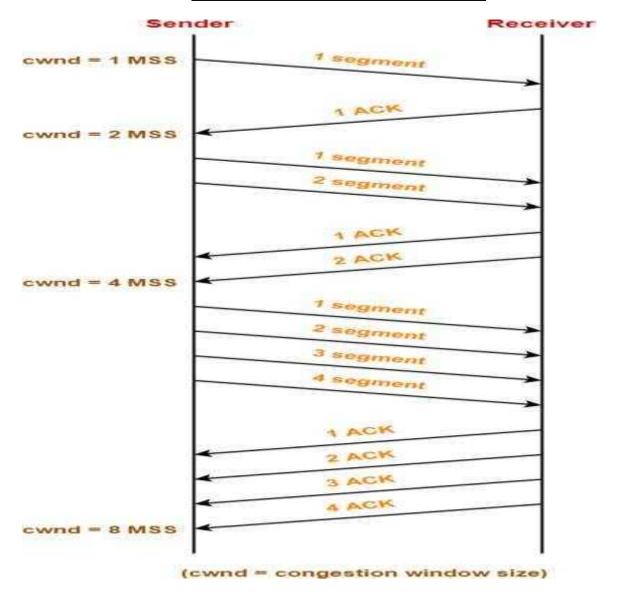
TCP's general policy for handling congestion consists of following three phases-



- ☐ Initially sender sets congestion window Maximum Segment Size (1 MSS).
- receiving each acknowledgment, ☐ After sender increases the congestion window size by 1 MSS.
- ☐ In this phase, the size of congestion window increases exponentially.

Congestion window size = Congestion window size + Maximum segment size





(cwnd = congestion window size)

- ☐ After 1 round trip time, congestion window size = $(2)^1 = 2$ MSS
- ☐ After 2 round trip time, congestion window size = $(2)^2$ = 4 MSS
- ☐ After 3 round trip time, congestion window size = $(2)^3$ = 8 MSS and so on.

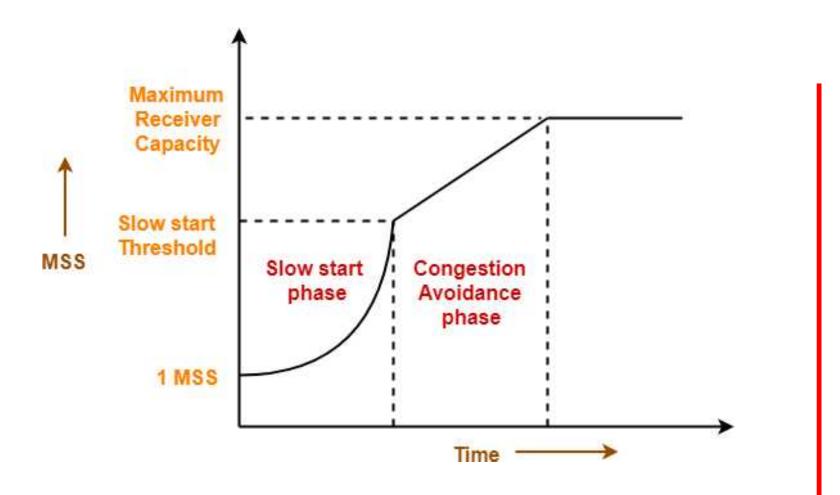
This phase continues until the congestion window size reaches the slow start threshold.

Threshold

- = Maximum number of TCP segments that receiver window can accommodate / 2
- = (Receiver window size / Maximum Segment Size) / 2

2. Congestion Avoidance Phase-

After reaching the threshold,


- ☐ Sender increases the congestion window size linearly to avoid the congestion.
- ☐ On receiving each acknowledgement, sender increments the congestion window size by 1.

Congestion window size = Congestion window size + 1

2. Congestion Avoidance Phase-

Case-01: Detection On Time Out-

- ☐ Time out Timer expires before receiving the acknowledgement for a segment.
- ☐ This case suggests the stronger possibility of congestion in the network.
- ☐ There are chances that a segment has been dropped in the network.

Reaction-

In this case, sender reacts by-

- •Setting the slow start threshold to half of the current congestion window size.
- •Decreasing the congestion window size to 1 MSS.
- Resuming the slow start phase.

Case-02: Detection On Receiving 3 Duplicate **Acknowledgements-**

- ☐ Sender receives 3 duplicate acknowledgements for a segment.
- ☐ This case suggests the weaker possibility of congestion in the network.
- ☐ There are chances that a segment has been dropped but few segments sent later may have reached.

Reaction-

In this case, sender reacts by-

- ☐ Setting the slow start threshold to half of the current congestion window size.
- □ Decreasing the congestion window size to slow start threshold.
- ☐ Resuming the congestion avoidance phase.

Animation Video of TCP congestion Control

ASSESSMENT

- 1. What is the message format in Transport layer?
- 2.List the Congestion control mechanism in TCP
- 3. Mention the applications of TCP

THANK YOU