

UNIT – 3 BIOPOTENTIAL ELECTRODES & CONFIGURATION

Goldman-Hodgkin-Katz Eq.

Bioelectricity

- Provides basis for "irritability" or "excitability
- Fundamental property of all living cells
- Related to minute differences in the electrical potential across a cell

'resting potential'

- Resting potential values can range from 20 to 100 mv, with inside of membrane negative to outside
- Any stimulus which evokes a response in a cell is associated with a change in this potential

A. Measuring a neuron's resting potential

B. How the resting potential is generated

- Membrane Channels:
 - Leak Channels
- Gated Channels
 - Chemical (Ligand)
 - Voltage
 - Mechanical

Voltage-Gated Sodium Channel

Voltage-Gated Potassium Channel

Look at squid giant axon:

 $E_{Cl} = -69.3 \text{ mV}$

What determines the value of the membrane voltage?

Goldman-Hodgkin-Katz Eq.

$$V_{m} = +25 \text{ mV} \cdot \ln \frac{P_{Na} [Na^{+}]_{o} + P_{K} [K^{+}]_{o} + P_{Cl} [Cl^{-}]_{i}}{P_{Na} [Na^{+}]_{i} + P_{K} [K^{+}]_{i} + P_{Cl} [Cl^{-}]_{o}}$$

If the membrane were only permeable to Na:

$$V_{m} = +25 \text{ mV} \cdot \ln \frac{P_{Na} [Na^{+}]_{o}}{P_{Na} [Na^{+}]_{i}} = E_{Na} = +54.4 \text{ mV}$$

Goldman-Hodgkin-Katz Eq.

$$V_{m} = +25 \text{ mV} \cdot \ln \frac{P_{Na} [Na^{+}]_{o} + P_{K} [K^{+}]_{o} + P_{Cl} [Cl^{-}]_{i}}{P_{Na} [Na^{+}]_{i} + P_{K} [K^{+}]_{i} + P_{Cl} [Cl^{-}]_{o}}$$

If the membrane were only permeable to K:

$$V_{m} = +25 \text{ mV} \cdot \ln \frac{\int_{K}^{K} [K^{+}]_{o}}{\int_{K}^{K} [K^{+}]_{i}} = E_{K} = -74.9 \text{ mV}$$

If the membrane were only permeable to Cl:

$$V_{\rm m} = +25 \text{ mV} \cdot \ln \frac{P_{\rm Cl} [\rm Cl^{-}]_{\rm i}}{P_{\rm Cl} [\rm Cl^{-}]_{\rm o}} = E_{\rm Cl} = -69.3 \text{ mV}$$

Thus, the GHK eq. is a sum of the Nernst eqs. weighted by permeability!

In the resting neuron, $P_K \& P_{Cl} >> P_{Na}$

(~ 20-50 x)

Therefore, Vm is close to $E_K \& E_{Cl}$

with <u>very</u> little contribution from E_{Na}

Neuronal Physiology

Neurons = nerve cells; fundamental unit of nervous system

Surrounded by plasma membrane that possesses an electrical potential (resting potential = -70 mv)

Membrane potential due to uneven distribution of ions on either side of membrane

Nerve (and muscle) cells can make special use of this potential (i.e., excitable tissues) – use changes in the potential to create signals and hence transmit information or bring about contractions

Graded Potential

Time (ms)

Graded Potential

Time (ms)

Action Potential

Time (ms)

and the second secon

2 Na⁺ gates start to open, and some Na⁺ enters the neuron.

Many Na⁺ gates open, and Na⁺ rushes in. (K⁺ gates are closed.)

• Na+ gates close and inactivate. K+ gates open, and K+ rushes out.

Resting state: no net ion flow across the membrane.

NEURON INTERIOR

+

No "Resting" Potential for the Weary

Use the Goldman, Hodgkin, Katz equation to calculate the resting potential (V_m) for a cell having the following features:

Na⁺ concentration is 150 mM on the outside and 17 mM on the inside K⁺ concentration is 5 mM on the outside and 143 mM on the inside Cl⁻ concentration is 165 mM on the outside and 20 mM on the inside

The cell membrane is 25 times more permeable to K⁺ and Cl⁻ than to Na⁺