

UNIT – 3 BIOPOTENTIAL ELECTRODES & CONFIGURATION

Polarization effects of electrode

Polarization

 with current flowing the half-cell voltage changes this voltage change is called overpotential or polarization.

Note: Polarization and impedance of the electrode are two of the most important electrode properties to consider.

Perfectly Polarizable Electrodes

The current across the interface is a displacement current and the electrode behaves like a capacitor. No electrodes' ions transfer. Instead, the ions and electrons (of the solution) at the surface of the metal become polarized. The charges orient at the interface to create an electric double layer; the metal then acts like a capacitor.

Example : Silver/silver chloride (Ag/AgCI) electrode, Platinum (Pt) electrode, metal electrodes.^[5]

Perfectly Non-Polarizable Electrode

Current passes freely across the electrode-electrolyte interface, requiring no energy to make the transition. No overpotentials. Non-polarizable electrodes are reversible (ions in the solution are charged and discharged).

Example: Silver/silver chloride (Ag/AgCl) electrode. Mercury/mercurous chloride (Hg/Hg₂Cl₂) (Calomel).

Nernst equation

For arbitrary concentration and temperature

 $E = RT/(zF) \cdot ln(c/K)$

- E electrode potential
- R = 8.314 J /(mol*K) molar gas constant
- T absolute temperature
- z valence
- F = 96485 C/mol Faraday's constant
- c concentration of metal ion in solution
- K "metal solution pressure", or tendency to dissolve

electrode double layer

No current

7 🕞

current influence

- with current flowing the half-cell voltage changes
- this voltage change is called
 overpotential or polarization:
 V_p = V_r + V_c + V_a
 activation, depends on direction of reaction
 - concentration (change in double layer)

ohmic (voltage drop)

polarizable electrode

- "perfectly" polarizable electrode:
 only displacement current, electrode behave like a capacitor
- example: noble metals like platinum Pt

nonpolarizable electrode

- "perfectly" nonpolarizable electrode:
 - current passes freely across interface,
 - no overpotential
- examples:
 - silver/silver chloride (Ag/AgCI),
 - mercury/mercurous chloride (Hg/Hg_2Cl_2) (calomel)