

UNIT – 3 BIOPOTENTIAL ELECTRODES & CONFIGURATION

Electrode & Interface

the interface problem

metal cation

leaving into the electrolyte

No current

One atom M out of the metal is oxidized to form one cation M⁺ and giving off one free electron e⁻ to the metal.

metal cation

joining the metal

No current

One cation M⁺ out of the electrolyte becomes one neutral atom M taking off one free electron from the metal.

half-cell voltage

No current, 1M salt concentration, T = 25°C

Half Cell Potential

A characteristic potential difference established by the electrode and its surrounding electrolyte which depends on the metal, concentration of ions in solution and temperature (and some second order factors).

Half cell potential cannot be measured without a second electrode.

The half cell potential of the standard hydrogen electrode has been arbitrarily set to zero. Other half cell potentials are expressed as a potential difference with this electrode.

Reason for Half Cell Potential : Charge Separation at Interface Oxidation or reduction reactions at the electrode-electrolyte interface lead to a double-charge layer, similar to that which exists along electrically active biological cell membranes.

Measuring Half Cell Potential

Note: Electrode material is metal + salt or polymer selective membrane 10

reduction reaction	$E^{o}(V)$	
$Al^{3+} + 3e^- \rightarrow Al$	- 1.662	
$Zn^{2+} + 2e^- \rightarrow Zn$	-0.762	Some half cell potentials
$Cr^{3+} + 3e^- \rightarrow Cr$	-0.744	
$Fe^{2+} + 2e^- \rightarrow Fe$	-0.447	
$Cd^{2+} + 2e^- \rightarrow Cd$	-0.403	
$Ni^{2+} + 2e^- \rightarrow Ni$	-0.257	
$Pb^{2+} + 2e^- \rightarrow Pb$	-0.126	
$2H^+ + 2e^- \rightarrow H_2$	0.000◀	 Standard Hydrogen electrode
$AgCl + e^- \rightarrow Ag + Cl^-$	+ 0.222	
$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	+ 0.268	Note: Ag-AgCl has low
$Cu^{2+} + 2e^- \rightarrow Cu$	+0.342	junction potential & it is
$Cu^+ + e^- \rightarrow Cu$	+ 0.521	also very stable -> hence
$Ag^+ + e^- \rightarrow Ag$	+ 0.780	used in ECG electrodes!
$Au^{3+} + 3e^- \rightarrow Au$	+1.498	
$Au^+ + e^- \rightarrow Au$	+ 1.692	11