

UNIT – 2

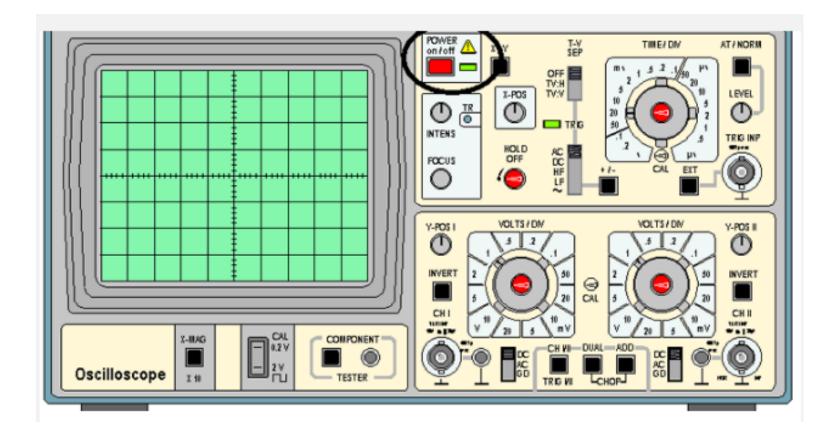
SIGNAL RECORDERS

Cathode Ray Oscilloscope (CRO)

1. CRO stands for _____.

Current Resistance Oscillator Capacitance Resistance Oscilloscope Central Resistance Oscillator Cathode Ray Oscilloscope

2. A function generator is a multipurpose signal source, it can generate: Square Wave Triangle Wave Sine Wave All of above

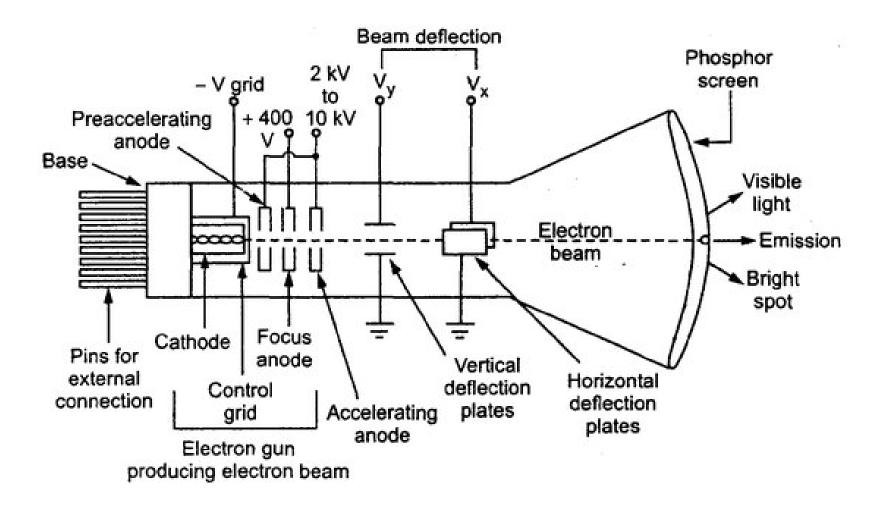

3. An advantage of Oscilloscope over multimeter is that We can measure accurate value of voltage We can see the wave shape of voltage We can measure accurate value of current We can measure accurate resistance

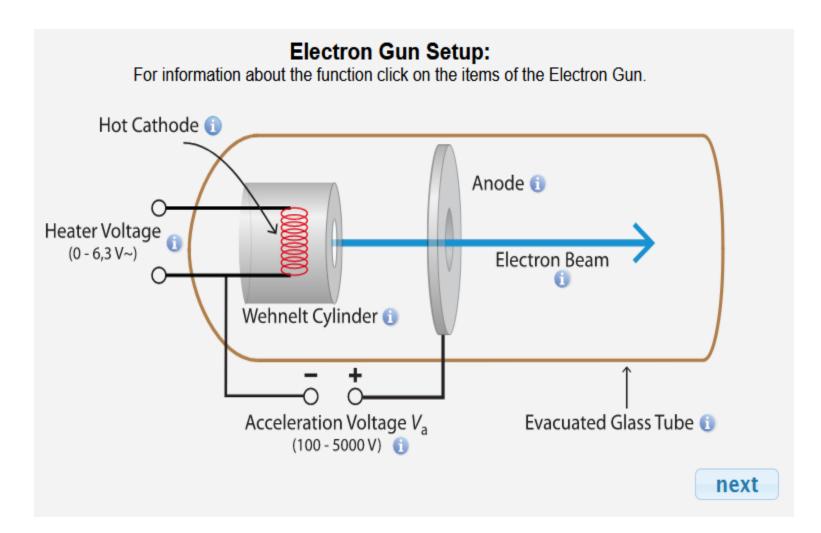
4. The graticule of an oscilloscope, which has a grid pattern graduated in Square centimeters Millimeters Centimeters None of these

5. If the vertical sensitivity is set to 0.5 volt per division and occupies 4 divisions, then peak-to-peak voltage is

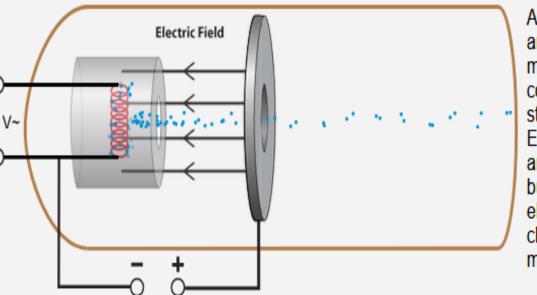
4 volt 5 volt 2 volt 20 volt

Cathode Ray Oscilloscope (CRO)

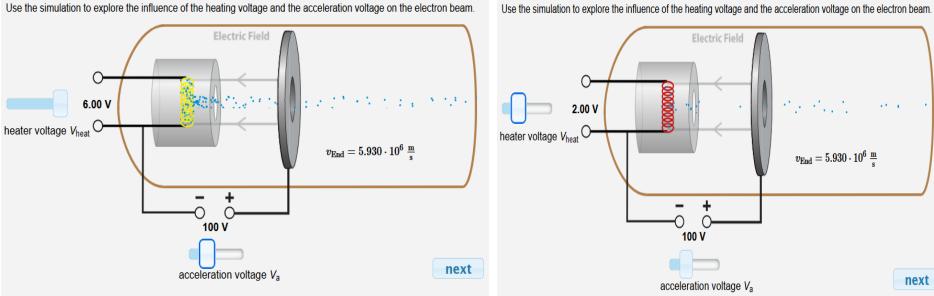



Block Diagram

Block Diagram of Cathode Ray Oscilloscope (CRO)


Cathode Ray Tube

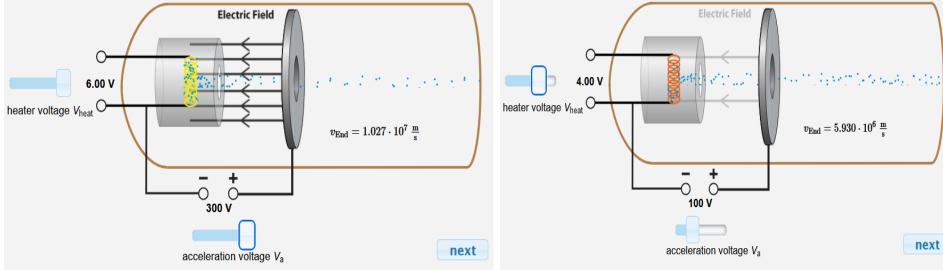
Function of an Electron Gun


The heater voltage V_{heat} causes a current flow via the filament. O-This current heats the filament and because of the <u>thermionic</u> emission (thermal electron emission) electrons get out of the metal. So an electron cloud is set up around the hot cathode.

The acceleration voltage V_a generates an electric field between the hot cathode and the anode. This field accelerates the free electrons from the hot cathode to the anode.

After passing the the electrons anode with forward move constant speed in a straight direction. Everything happens in an evacuated glass bulb, so that the electrons does not clash with air molecules

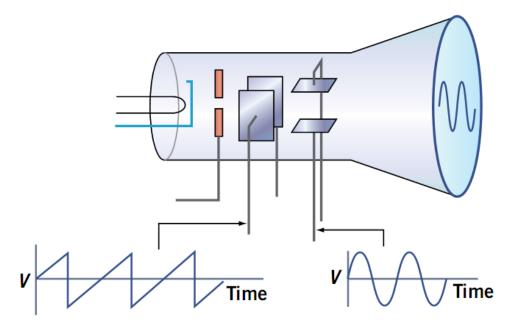
next



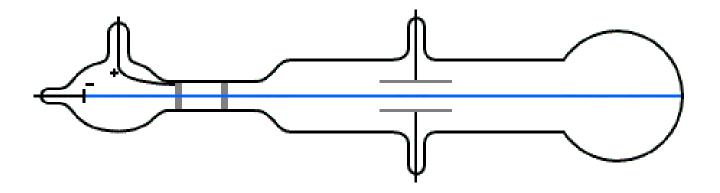
Simulation of an Electron Gun

Use the simulation to explore the influence of the heating voltage and the acceleration voltage on the electron beam.

Simulation of an Electron Gun


Use the simulation to explore the influence of the heating voltage and the acceleration voltage on the electron beam.

Simulation of an Electron Gun

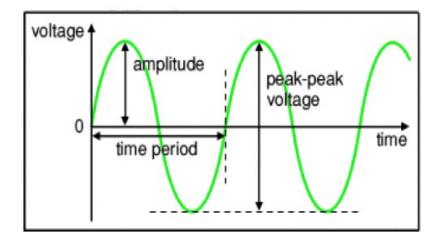

Use the simulation to explore the influence of the heating voltage and the acceleration voltage on the electron beam.

Simulation of an Electron Gun

sawtooth voltage for timebase

sinusoidal vertical voltage

Cloze test about the function of an Electron Gun


Drag the words!

Α	causes a current through the hot cathode. The cathode starts			filament voltage
glowing. Because of the	emi	ssion some	can	opening
leave the wire and build a cloud of so called around the glowing			thermionic	
wire. To produce a fine electron beam these electrons must be forced to the center of the				uniformly
glowing wire. For this	а	is used. The c	ylinder is charged	electrons
and forces the electrons in the center of the cylinder.				negative
In addition, a high v	oltage is applied betw	een the filament	and the circular	electrical
	Here the filament i	s charged nega	ative, the anode	constant
. 1	This voltage causes an		field between hot	
cathode and anode. This field accelerates the electrons and causes				Wehnelt cylinder
a motion towards the anode. In the center of the anode is a small				positive
so the electrons can pass through the anode. A fine electron beam is created. When				free electrons
passing through the anode the electrons leave the electric field between filament and				anode
anode. So there is no m	ore	and the electrons	move forward with	acceleration
velocity.				

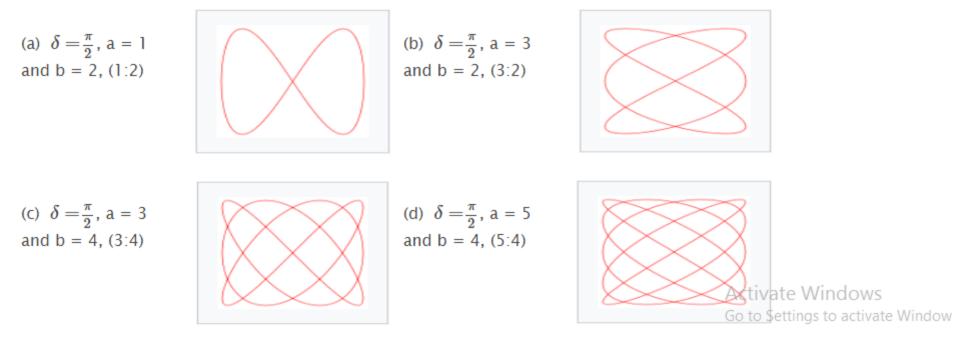
Cloze test about the function of an Electron Gun

Drag the words!

A filament voltage causes a current through the hot cathode. The	filament voltage			
cathode starts glowing. Because of the thermionic emission	opening			
some electrons can leave the wire and build a cloud of so called	thermionic			
free electrons around the glowing wire. To produce a fine	uniformly			
electron beam these electrons must be forced to the center of the glowing wire. For this a	electrons			
Wehnelt cylinder is used. The cylinder is charged	negative			
negative and forces the electrons in the center of the cylinder.	electrical			
In addition, a high voltage is applied between the filament and the circular anode. Here the filament is charged negative, the anode	constant			
positive. This voltage causes an	Wehnelt cylinder			
electrical field between hot cathode and anode. This field accelerates the electrons	positive			
uniformly and causes a motion towards the anode. In the center	free electrons			
of the anode is a small opening, so the electrons can pass	anode			
through the anode. A fine electron beam is created. When passing through the anode the	acceleration			
electrons leave the electric field between filament and anode. So there is no more				
acceleration and the electrons move forward with				
constant velocity.				

Amplitude is the maximum voltage reached by the signal. It is measured in volts. **Peak voltage** is another name for amplitude.

Peak-peak voltage is twice the peak voltage (amplitude). When reading an oscilloscope trace it is usual to measure peak-peak voltage.


Time period is the time taken for the signal to complete one cycle. It is measured in seconds (s), but time periods tend to be short so milliseconds (ms) and microseconds (μ s) are often used. 1ms = 0.001s and 1 μ s = 0.000001s.

Frequency is the number of cycles per second. It is measured in hertz (Hz), but frequencies tend to be high so kilohertz (kHz) and megahertz (MHz) are often used. 1kHz = 1000Hz and 1MHz = 100000Hz.

Lissajous Figure

oscilloscope, suppose x is channel 1 and y is channel 2, A is the amplitude of channel 1 and B is the amplitude of channel 2, a is the frequency of channel 1 and b is the frequency of channel 2, so $\frac{a}{b}$ is the ratio of frequencies of the two channels, and δ is the phase shift of CH1.

The following figure shows some of the possible curves that can be drawn by varying the frequency and phase of the sinusoidal functions.

