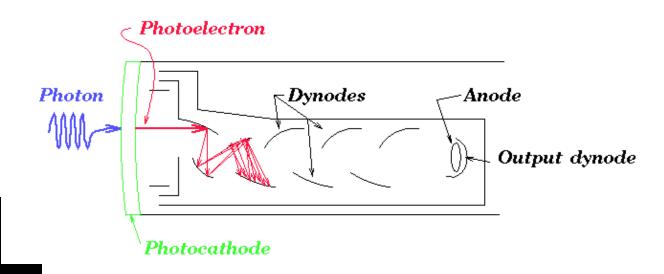


UNIT - 1

SCIENCE OF MEASUREMENT AND TRANSDUCERS


Photomultiplier Tube

Basic Photomultiplier Tube (PMT Struct

- 1. Photocathode
- 2. Electron Optical Input System
- 3. Electron Multiplier
- 4. Anode

The Photocathode

Photocathode converts incident photons to photoelectrons

Emitted electron energy given by Einstein's photoelectric affect:

$$E = hv - \phi$$

Must reach minimum frequency for equation to be applicable

Photocathode Values

1. Quantum Efficiency:

$$\eta(\lambda) = \frac{N_{photoelectrons}}{N_{photons}(\lambda)}$$

2. Radiant Cathode Sensitivity:

$$S(\lambda) = \frac{I_k}{P(\lambda)}$$

Photocathode Values

Or:

$$S(\lambda) = \lambda \eta(\lambda) \frac{e}{hc}$$

For Units in Amperes/Watts

Or: Luminous Cathode Sensitivity (Not Recommended)

Photocathode Values

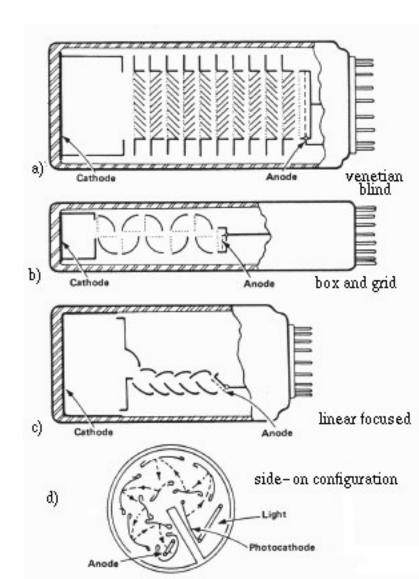
Energy Loss given by Escape Depth

$$\Delta E \simeq x \frac{dE}{dx}$$

- Most materials $\eta(\lambda)$: 0.1%
- Semiconductors $\eta(\lambda)$: 10%-30%
- Negative Electron Affinity Metals η(λ): ≤80%

Electron Optical Input System

- Two electrodes guide electrons to first dynode using an electric field
- Focusing electrode on the sides of the PMT
- Accelerating electrode by first dynode
- Two requirements:
 - 1) As efficient as possible
 - 2) Uniform time from cathode to


dynode

Electron Multiplier Section

- Secondary emission electrodes (dynodes)
- Each has secondary emission factor δ
- Like photocathode, but with incident electrons and E-field
- Dynode material requirements:
 - 1) High δ
 - 2) Stability of emission even with current
 - 3) Low thermionic emission
- Use 10-14 stages with total Gain ≈ 10^7
- Use negative electron affinity metals

Electron Multiplier Section

- Dynode Configurations:
 - a) Venetian Blind
 - b) Box and Grid
 - c) Linear focused
 - d) Side-On Configuration

