

SNS COLLEGE OF TECHNOLOGY COIMBATORE

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade

Approved by AICTE New Delhi & affiliated to the Anna University, Chennai

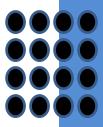
DEPARTMENT OF MCA

Course Name : 19CAT609 - DATA BASE MANAGEMENT SYSTEM

Class : I Year / I Semester

Unit II - Relational Model

Topic IV – Relational algebra and Calculus



Language in which user requests information from the database. **Categories of languages**

- Procedural
- Non-procedural, or declarative
- "Pure" languages:
- **Relational algebra**
- Tuple relational calculus
- Domain relational calculus
- Pure languages form underlying basis of query languages that people use.

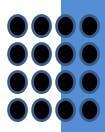
Slide 2 of 96

Relational Algebra

Procedural language

- Six basic operators
 - select: σ
 - project: \prod ullet
 - union: \cup
 - set difference:
 - Cartesian product: x
 - rename: p \bullet
- The operators take one or two relations as inputs and produce a new relation as a result.

Slide 3 of 96


Select Operation

 \Box Notation: σ p(r) **D** p is called the selection predicate Defined as:

$\sigma p(r) = \{t \mid t \in r \text{ and } p(t)\}$

- U Where p is a formula in propositional calculus consisting of terms connected by : \land (and), \lor (or), \neg (not) Each term is one of:
- <attribute> op <attribute> or <constant> where op is one of: $=, \neq, >, \geq . < . \leq$ Example of selection: σ branch name="Perryridge"(account) Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 4 of 96

Select Operation

• Relation r

•
$$\sigma_{A=B^{D}>5}(r)$$

			- 1
Α	В	С	D
α	α	1	7
α	eta	5	7
β	eta	12	3
β	β	23	10
A	В	С	D
α	α	1	7
β	β	23	10

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 5 of 96

Project Operation

Notation:

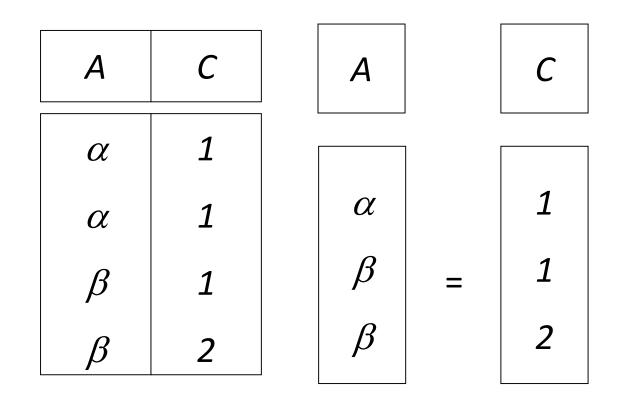
- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the branch name attribute of account

$\Pi_{account number. \ balance}$ (account)

• Since the result of a relational algebra expression is always a relation, we can substitute an expression wherever a relation is expected

$$\prod_{\text{sname, rating}} (\sigma_{\text{rating}} \otimes (S2))$$

Slide 6 of 96



Project Operation – Example

Relation r

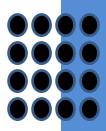
A	В	С
α	10	1
α	20	1
eta	30	1
eta	40	2

•∏_{A,C} (*r*)

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 7 of 96

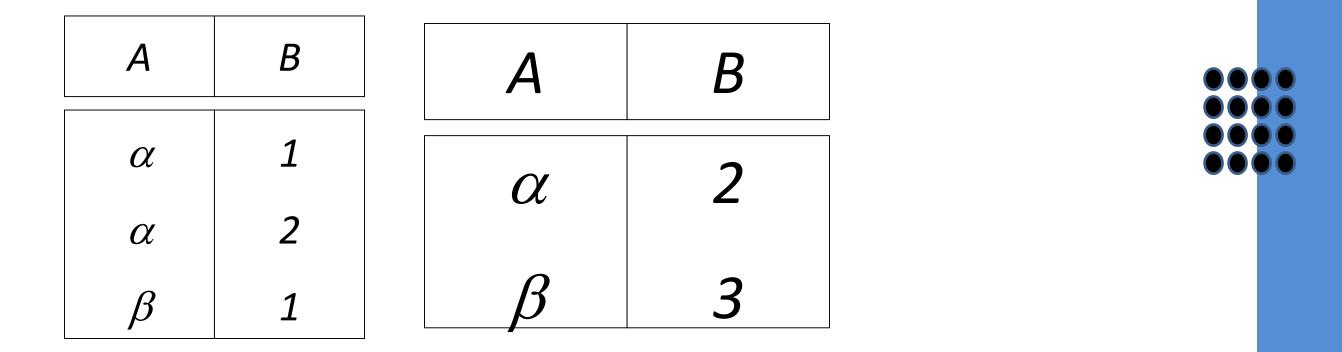
- **Notation:** $\mathbf{r} \cup \mathbf{s}$
- Defined as:
- $r \cup s = \{t \mid t \in r \text{ or } t \in s\}$


 \Box For r \cup s to be valid.

- 1. r, s must have the same arity (same number of attributes)
- 2. The attribute domains must be compatible (example: 2nd column

of r deals with the same type of values as does the 2nd column of s)

Example: to find all customers with either an account or a loan [customer_name (depositor) \cup [customer_name (borrower)



Slide 8 of 96

Union Operation – Example

• Relations r, s:

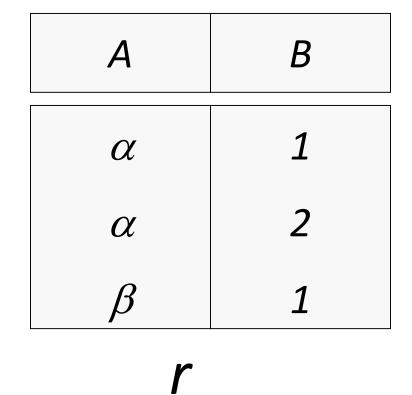
S

A	В
α	1
α	2
β	1
β	3

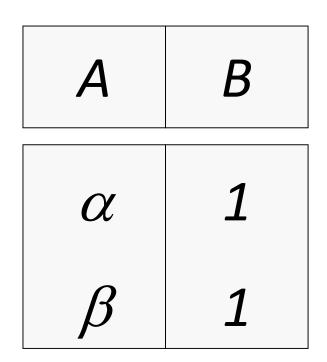
Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 9 of 96

- Notation r s
- Defined as:
 - $r-s = \{t \mid t \in r \text{ and } t \notin s\}$
- Set differences must be taken between compatible relations. **I** r and s must have the same arity • attribute domains of r and s must be compatible



Slide 10 of 96



Union Operation – Example

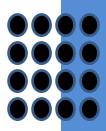
• Relations r, s:

•r - s:

A	В
α	2
β	3

S

Slide 11 of 96



- Notation r x s
- Defined as:
 - $rxs = \{tq \mid t \in r and q \in s\}$

Assume that attributes of r(R) and s(S) are disjoint.

- \Box (That is, $R \cap S = \emptyset$).
- □ If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Slide 12 of 96

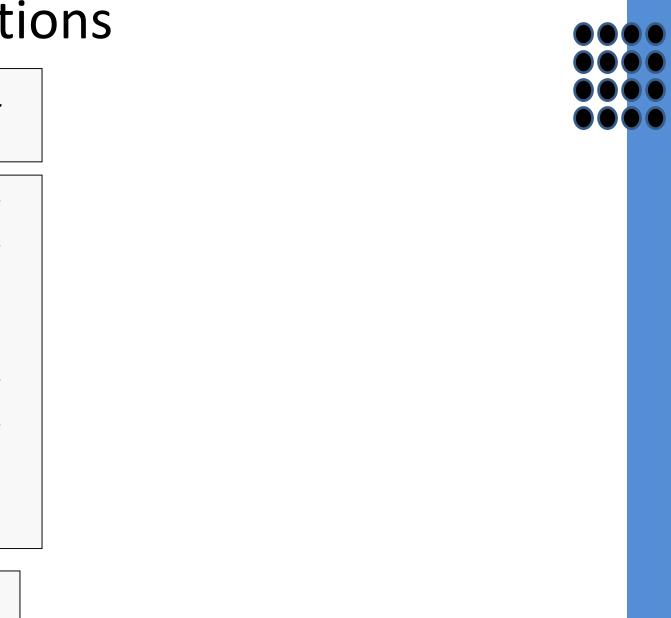
Cartesian-Product Operation – Example

Relations r, s:	A		В				С	D	Ε
]		α	10	a
	α		1				β	10	а
	ß		2				β	20	b
	ρ		2				γ	10	b
	ľ	r						S	
• r x s:			A	В	С	D	Ε		
			α	1	α	10	a		
			α	1	β	10	a		
			α	1	β	20	b		
			α	1	γ	10	b		
			β	2	α	10	a		
			β	2 2	β	10 20	a b		
			β β	2	$egin{array}{c} eta \ \gamma \end{array}$	20 10	b		

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 13 of 96

rxs


Can build expressions using multiple operations Example: $\sigma_{A=C}(r x s)$

A	В	С	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b
A	В	С	D	Ε
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

 $\sigma_{A=C}(r x s)$

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 14 of 96

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name. **Example**:
- ρx(E)
- returns the expression E under the name X
- If a relational-algebra expression E has arity n, then returns the result of expression E under the name X, and with the attributes renamed to
- 🖵 A1 , A2 ,, An .

Slide 15 of 96

branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account number, branch name, balance) loan (loan_number, branch_name, amount) depositor (customer name, account number) borrower (customer_name, loan_number)

Slide 16 of 96

• Find all loans of over \$1200

 $\sigma_{amount > 1200}$ (loan)

- Find the loan number for each loan of an amount greater than \$1200 $\prod_{loan number} (\sigma_{amount > 1200} (loan))$
- Find the names of all customers who have a loan, an account, or both, from the bank

 $\prod_{customer name}$ (borrower) $\cup \prod_{customer name}$ (depositor)

Slide 17 of 96

 Find the names of all customers who have a loan at the Perryridge branch.

• Query 1 $I_{customer_name} (\sigma_{branch_name} = "Perryridge" ($ σ_{borrower.loan} number = loan.loan number (borrower x loan)))

• Query 2

 $\prod_{customer_name} (\sigma_{loan.loan_number} = borrower.loan_number ($ $(\sigma_{branch name = "Perryridge"} (loan)) \times borrower))$

Slide 18 of 96



- Find the largest account balance
 - -Strategy:
 - Find those balances that are *not* the largest
 - -Rename *account* relation as *d* so that we can compare each account balance with all others
 - Use set difference to find those account balances that were *not* found in the earlier step.

-The query is:

 $\prod_{balance} (account) - \prod_{account.balance}$ $(\sigma_{account.balance} < d.balance$ (account x ρ_d (account)))

Slide 19 of 96

A basic expression in the relational algebra consists of either one of the following:

A relation in the database

A constant relation

Let E_1 and E_2 be relational-algebra expressions; the following are all relationalalgebra expressions:

$$E_{1} \cup E_{2}$$

$$E_{1} - E_{2}$$

$$E_{1} \times E_{2}$$

$$\sigma_{p} (E_{1}), P \text{ is a predicate on attributes in } E_{1}$$

$$\prod_{s}(E_{1}), S \text{ is a list consisting of some of the attributes}$$

$$\rho_{x} (E_{1}), x \text{ is the new name for the result of } E_{1}$$

Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

es in E_1

Slide 20 of 96

A basic expression in the relational algebra consists of either one of the following:

A relation in the database

A constant relation

Let E_1 and E_2 be relational-algebra expressions; the following are all relationalalgebra expressions:

$$E_{1} \cup E_{2}$$

$$E_{1} - E_{2}$$

$$E_{1} \times E_{2}$$

$$\sigma_{p} (E_{1}), P \text{ is a predicate on attributes in } E_{1}$$

$$\prod_{s}(E_{1}), S \text{ is a list consisting of some of the attributes}$$

$$\rho_{x} (E_{1}), x \text{ is the new name for the result of } E_{1}$$

Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

es in E_1

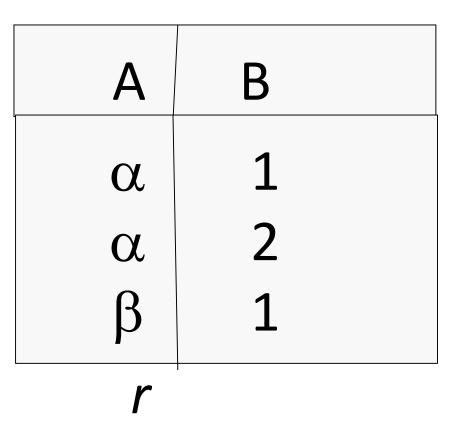
Slide 21 of 96

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

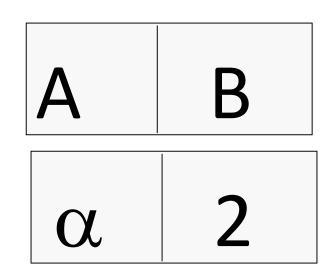
✓ Set intersection ✓ Natural join ✓ Division ✓ Assignment

Slide 22 of 96

Notation: $r \cap s$ Defined as: $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$ Assume: r, s have the same arity attributes of *r* and *s* are compatible Note: $r \cap s = r - (r - s)$



Slide 23 of 96



Set-Intersection Operation – Example

Relation *r, s*:

 $r \cap s$

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

A	В
α	2
β	3

S

Slide 24 of 96

Notation: $r \bowtie s$ Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows: Consider each pair of tuples t_r from r and t_s from s. If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple *t* to the result, where

t has the same value as t_r on r

t has the same value as t_s on s

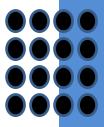
Example:

R = (A, B, C, D)

S = (E, B, D)

Result schema = (A, B, C, D, E)

s is defined as: r


$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B} \wedge_{r.D = s.D} (r \times s))$$

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 25 of 96

Natural Join Operation – Example

Relations r, s:

r	S

A	В	С	D		
α	1	α	а		
ß	2	γ	а		
γ	4	β	b		
α	1	γ	а		
δ	2	β	b		
	r				

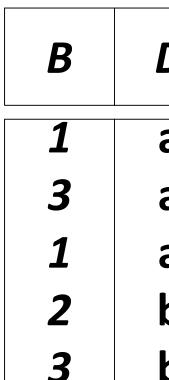
С

α

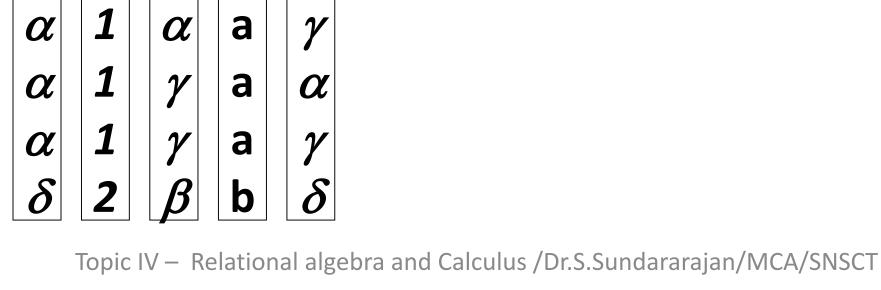
D

a

Ε


X

B


1

Α

α

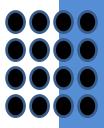
S

D	Ε
a	α
a	β
a	γ
b	δ
b	ϵ

Slide 26 of 96

Join Operations

Join Operations:


A Join operation combines related tuples from different relations, if and only if a given join condition is satisfied. It is denoted by \bowtie .

Example: EMPLOYEE

EMP_NA	EMP_CODE
Stepha	101
Jack	102
Harry	103

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

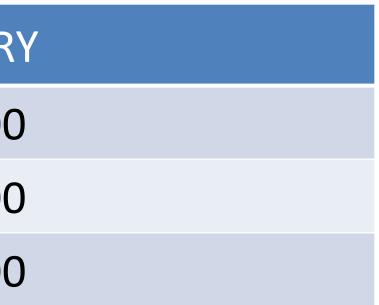
ME

an

Slide 27 of 96

Join Operations

Example: SALARY


EMP_CODE	SALAR
101	5000
102	30000
103	25000

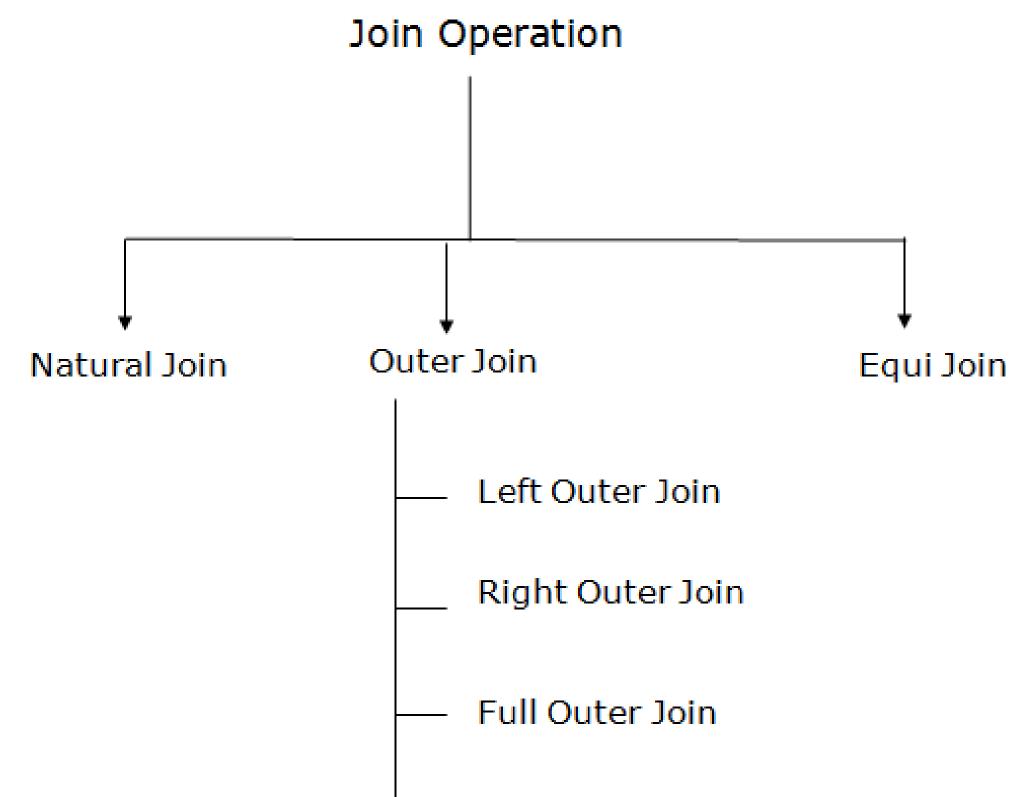
Example: SALARY Operation: (EMPLOYEE ⋈ SALARY)

EMP_CODE	EMP_NAME	S/
101	Stephan	5
102	Jack	3
103	Harry	2

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

ALARY

50000


30000

25000

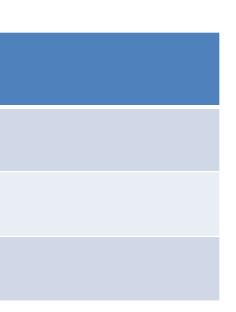
Slide 28 of 96

Types of Join operations

Slide 29 of 96

A natural join is the set of tuples of all combinations in R and S that are equal on their common attribute names.

It is denoted by \bowtie .


Example: Let's use the above EMPLOYEE table and SALARY table: Input:

 $TEMP_NAME$, SALARY (EMPLOYEE \bowtie SALARY) **Output:**

EMP_NAME	SALARY
Stephan	50000
Jack	30000
Harry	25000

Slide 30 of 96

The outer join operation is an extension of the join operation. It is used to deal with missing information. **Example: EMPLOYEE**

EMP_NAME	STREET	
Ram	Civil line	
Shyam	Park street	
Ravi	M.G. Street	
Hari	Nehru nagar	

CITY

Mumbai

Kolkata

Delhi

Hyderabad

Slide 31 of 96

2. Outer Join

FACT_WORKERS

EMP_NAME	BRANCH	
Ram	Infosys	
Shyam	Wipro	
Kuber	HCL	
Hari	TCS	

Input: (EMPLOYEE ⋈ FACT_WORKERS)

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

SALARY

10000

20000

30000

50000

Slide 32 of 96

2. Outer Join

Outnut

Output.				
EMP_NAME	STREET	CITY	BRANCH	SALARY
Ram	Civil line	Mumbai	Infosys	10000
Shyam	Park street	Kolkata	Wipro	20000
Hari	Nehru nagar	Hyderabad	TCS	50000

Slide 33 of 96

Outer Join

An outer join is basically of three types:

- •Left outer join
- •Right outer join
- •Full outer join

Slide 34 of 96

a. Left outer join:

Left outer join contains the set of tuples of all combinations in R and S that are equal on their common attribute names. In the left outer join, tuples in R have no matching tuples in S. It is denoted by \bowtie .

Example: Using the above EMPLOYEE table and FACT_WORKERS table **Input:** EMPLOYEE ▷ FACT WORKERS

EMP_NAME	STREET	CITY	BRANCH	SALARY
Ram	Civil line	Mumbai	Infosys	10000
Shyam	Park street	Kolkata	Wipro	20000
Hari	Nehru street	Hyderabad	TCS	50000
Ravi	M.G. Street	Delhi	NULL	NULL

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 35 of 96

b. Right outer join:

Right outer join contains the set of tuples of all combinations in R and S that are equal on their common attribute names. In right outer join, tuples in S have no matching tuples in R. It is denoted by \bowtie .

Example: Using the above EMPLOYEE table and FACT_WORKERS Relation

Input: EMPLOYEE ▷ FACT_WORKERS

EMP_NAME	BRANCH	SALARY	STREET	CITY
Ram	Infosys	10000	Civil line	Mumbai
Shyam	Wipro	20000	Park street	Kolkata
Hari	TCS	50000	Nehru street	Hyderabad
Kuber	HCL	30000	NULL	NULL

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 36 of 96

c. Full outer join:

Full outer join is like a left or right join except that it contains all rows from both tables.

In full outer join, tuples in R that have no matching tuples in S and tuples in S that have no matching tuples in R in their common attribute name. It is denoted by \bowtie .

Example: Using the above EMPLOYEE table and FACT WORKERS table **Input:** EMPLOYEE ▷ FACT_WORKERS

EMP_NAME	STREET	CITY	BRANCH	SALARY
Ram	Civil line	Mumbai	Infosys	10000
Shyam	Park street	Kolkata	Wipro	20000
Hari	Nehru street	Hyderabad	TCS	50000
Ravi	M.G. Street	Delhi	NULL	NULL
Kuber	NULL	NULL	HCL	30000

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 37 of 96

3. Equi join

3. Equi join:

It is also known as an inner join. It is the most common join. It is based on matched data as per the equality condition. The equi join uses the comparison operator(=).

Example: CUSTOMER RELATION

CLASS_ID	
1	
2	
3	

PRODUCT_ID	CITY
1	Delhi
2	Mumbai
3	Noida

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

PRODUCT

NAME	
John	
Harry	
Jackson	

Slide 38 of 96

3. Equi join

Input: CUSTOMER № PRODUCT

Output:

CLASS_ID	NAME	PRODUCT_ID	CITY
1	John	1	Delhi
2	Harry	2	Mumbai
3	Harry	3	Noida

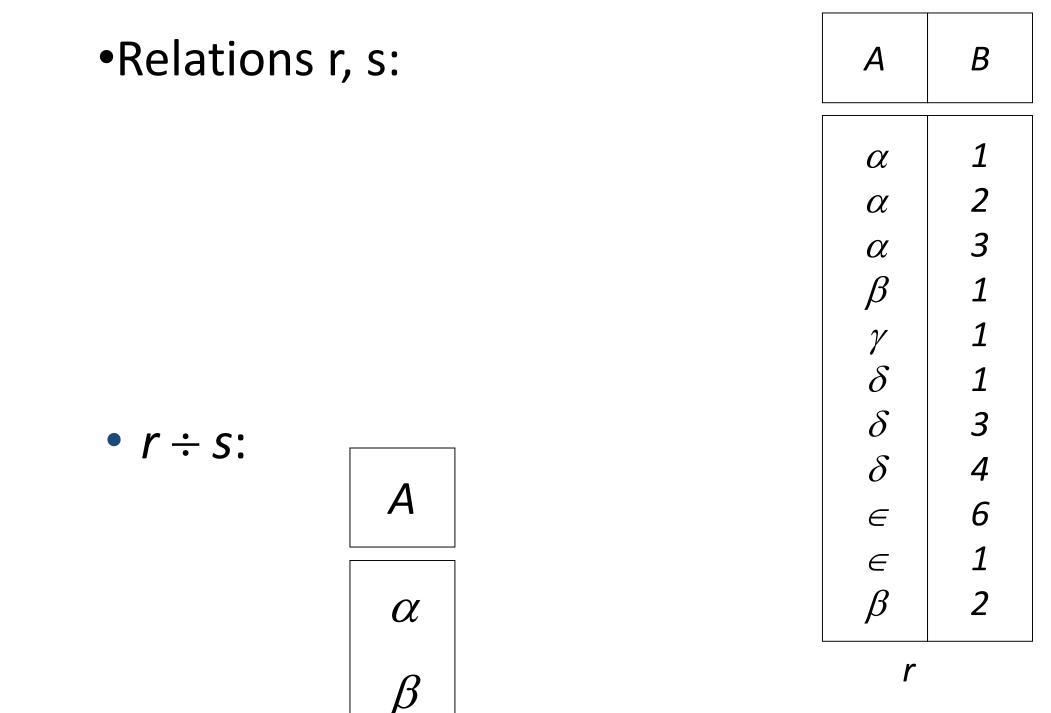
Slide 39 of 96

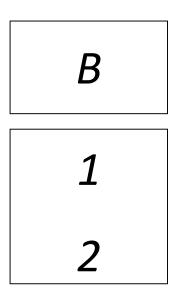
Division Operation

Notation:

Suited to queries that include the phrase "for all". Let r and s be relations on schemas R and S respectively where $R = (A_1, ..., A_m, B_1, ..., B_n)$ $S = (B_1, ..., B_n)$ The result of $r \div s$ is a relation on schema $R - S = (A_1, ..., A_m)$ $r \div s = \{ t \mid t \in \prod_{R-S} (r) \land \forall u \in S (tu \in r) \}$

Where tu means the concatenation of tuples t and u to produce a single tuple




Slide 40 of 96

Division Operation – Example

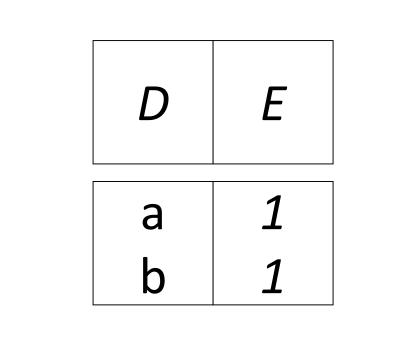
S

Slide 41 of 96

Another Division Example

•Relations r, s:	
------------------	--

A	В	С	D	Ε
$ \begin{array}{c} \alpha \\ \alpha \\ \alpha \\ \beta \\ \beta \\ \gamma \\ \gamma \\ \gamma \end{array} $	a a a a a a a	$egin{array}{c} lpha \ \gamma \ $	a a b a b a b	1 1 1 1 3 1 1
Y	а	β	b	1


r

• *r* ÷ s:

A	В	С
α	а	γ
γ	а	γ

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

S

Slide 42 of 96

Property

Let $q = r \div s$

Then q is the largest relation satisfying $q \ge r$ Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let $S \subseteq R$

$$r \div s = \prod_{R-S} \left(r \right) - \prod_{R-S} \left(\left(\prod_{R-S} \left(r \right) \times s \right) - \prod_{R-S,S} (r) \right)$$

To see why $\prod_{R-S,S} (r)$ simply reorders attributes of r

 $\prod_{R-S} (\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r)$ gives those tuples t in

 $\prod_{R-S} (r)$ such that for some tuple $u \in s$, $tu \notin r$.

Slide 43 of 96

The assignment operation (\leftarrow) provides a convenient way to express complex queries. Write query as a sequential program consisting of a series of assignments

followed by an expression whose value is displayed as a result of the query. Assignment must always be made to a temporary relation variable. Example: Write $r \div s$ as

> $temp1 \leftarrow \prod_{R-S} (r)$ $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$ *result* = *temp1* – *temp2*

The result to the right of the \leftarrow is assigned to the relation variable on the left of the ←.

May use variable in subsequent expressions.

Slide 44 of 96

 Find the names of all customers who have a loan and an account at bank. $\prod_{customer name}$ (borrower) $\cap \prod_{customer_name}$ (depositor)

 Find the name of all customers who have a loan at the bank and the loan amount

 $\Pi_{customer name, loan number, amount}$ (borrower) loan)

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 45 of 96

Bank Example Queries

• Find all customers who have an account from at least the "Downtown" and the Uptown" branches.

•Query 1

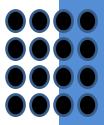
 $\prod_{customer_name} (\sigma_{branch_name} = "Downtown" (depositor \bowtie account)) \cap$ $[I]_{customer_name}$ ($\sigma_{branch name = "Uptown"}$ (depositor \bowtie account))

• Query 2

∏_{customer_name, branch_name} (depositor ⋈ account) ÷ ρ_{temp(branch name)} ({("Downtown"), ("Uptown")}) Note that Query 2 uses a constant relation

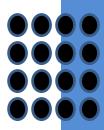
Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 46 of 96



• Find all customers who have an account at all branches located in Brooklyn city.

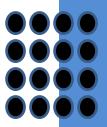
$$\Pi_{customer_name, branch_name} (depositor) \\ \div \Pi_{branch_name} (\sigma_{branch_city} = "Brooklyn")$$


⊠ account) (branch))

Slide 47 of 96

- •Generalized Projection
- •Aggregate Functions
- •Outer Join

Slide 48 of 96



Extends the projection operation by allowing arithmetic functions to be used in the projection list

E is any relational-algebra expression Each of F_1 , F_2 , ..., F_n are are arithmetic expressions involving constants and attributes in the schema of E. Given relation credit_info(customer_name, limit, credit_balance), find how much more each person can spend: []_{customer} name, limit – credit balance (credit_info)

Slide 49 of 96

Aggregation function takes a collection of values and returns a single value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

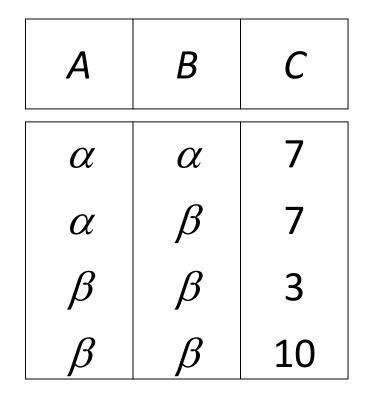
count: number of values

Aggregate operation in relational algebra

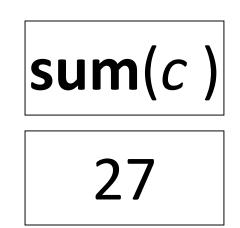
 G_{1},G_{2},K,G_{n} $\mathcal{G}_{F_{1}}(A_{1}),F_{2}(A_{2},K,F_{n}(A_{n}))$ (L)

E is any relational-algebra expression

 G_1, G_2, \dots, G_n is a list of attributes on which to group (can be empty) Each F_i is an aggregate function Each A_i is an attribute name

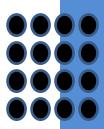


Slide 50 of 96



Aggregate Operation – Example

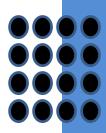
Relation *r*:



Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 51 of 96

Relation *account* grouped by *branch-name*:


branch_name	account_number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branch_name $g_{sum(balance)}$ (account)

branch_name

Perryridge Brighton Redwood

e	<pre>sum(balance)</pre>	
	1300	
	1500	
	700	

Slide 52 of 96



- •Result of aggregation does not have a name
- •Can use rename operation to give it a name
- •For convenience, we permit renaming as part of aggregate operation

branch_name $g_{sum}(balance)$ as sum balance (account)

Slide 53 of 96

An extension of the join operation that avoids loss of information. Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join. Uses *null* values:

null signifies that the value is unknown or does not exist All comparisons involving *null* are (roughly speaking) false by definition.

We shall study precise meaning of comparisons with nulls later

Outer Join

 Relation <i>loan</i> 			
	loan_number	branch_name	amount
	L-170 L-230 L-260	Downtown Redwood Perryridge	3000 4000 1700

• Relation *borrower*

customer_name	loan_
Jones	L-170
Smith	L-230
Sinch	
Hayes	L-155

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

_number

Slide 55 of 96

Outer Join – Example

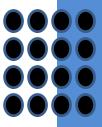
Join

loan	\bowtie	borrower
------	-----------	----------

loan_number	branch_name	amount	customer_name	
L-170	Downtown	3000	Jones	
L-230	Redwood	4000	Smith	

 Left Outer Join 				
	loan_number	branch_name	amount	customer_name
loan dorrower	L-170	Downtown	3000	Jones
	L-230	Redwood	4000	Smith
	L-260	Perryridge	1700	null

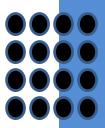
Slide 56 of 96


Outer Join – Example

- Right Outer Join
- *loan* k borrower

•	loan_number	branch_name	amount	customer_name
	L-170	Downtown	3000	Jones Smith
	L-230 L-155	Redwood <i>null</i>	4000 null	Smith Hayes

• Full Outer Join *loan_number* branch_name *loan* $= \bowtie$ *borrower* L-170 Downtown L-230 Redwood L-260 Perryridge L-155 null

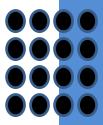

amount	customer_name
 3000	Jones
4000	Smith
1700	null
null	Hayes

Slide 57 of 96

- •It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- •*null* signifies an unknown value or that a value does not exist.
- •The result of any arithmetic expression involving *null* is *null*.
- •Aggregate functions simply ignore null values (as in SQL)
- •For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)

Comparisons with null values return the special truth value: *unknown* If *false* was used instead of *unknown*, then *not* (A < 5) would not be equivalent to $A \ge 5$ Three-valued logic using the truth value *unknown*: OR: (*unknown* **or** *true*) = *true*, (unknown **or** false) = unknown (unknown or unknown) = unknown AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown NOT: (**not** *unknown*) = *unknown* In SQL "P is unknown" evaluates to true if predicate P evaluates to unknown Result of select predicate is treated as *false* if it evaluates to *unknown*

Slide 59 of 96



The content of the database may be modified using the following operations:

- Deletion
- Insertion
- Updating

All these operations are expressed using the assignment operator.

Slide 60 of 96

A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.

- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$r \leftarrow r - E$$

where r is a relation and E is a relational algebra query.

Slide 61 of 96

- Delete all account records in the Perryridge branch. account \leftarrow account $-\sigma_{branch name = "Perryridge"}$ (account)
 - Delete all loan records with amount in the range of 0 to 50


loan \leftarrow loan $-\sigma_{amount \geq 0}$ and amount ≤ 50 (loan)

Delete all accounts at branches located in Needham.

> $r_1 \leftarrow \sigma_{branch\ city} = "Needham"$ (account \bowtie branch) $r_2 \leftarrow \prod_{account number, branch name, balance} (r_1)$ $r_3 \leftarrow \prod_{customer name, account number} (r_2 \bowtie depositor)$ account \leftarrow account $-r_2$ depositor \leftarrow depositor $-r_3$

> > Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 62 of 96

 Insert information in the database specifying that Smith has \$1200 in account A-973 at the Perryridge branch.

account \leftarrow account \cup {("A-973", "Perryridge", 1200)} depositor \leftarrow depositor \cup {("Smith", "A-973")}

• Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account.

> $r_1 \leftarrow (\sigma_{branch name = "Perryridge"}(borrower \bowtie loan))$ $account \leftarrow account \cup \prod_{loan number, branch_name, 200} (r_1)$ depositor \leftarrow *depositor* $\cup \prod_{customer name, loan_number} (r_1)$

> > Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 63 of 96

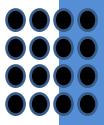
A mechanism to change a value in a tuple without charging *all* values in the tuple

Use the generalized projection operator to do this task

Each F_i is either the Ith attribute of r, if the Ith attribute is not updated, or, if the attribute is to be updated F_i is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

Slide 64 of 96

• Make interest payments by increasing all balances by 5 percent.


account $\leftarrow \prod_{account_number, branch_name, balance * 1.05}$ (account)

 Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

 $account \leftarrow \prod_{account_number, branch_name, balance * 1.06} (\sigma_{BAL > 10000} (account)) \\ \cup \prod_{account_number, branch_name, balance * 1.05} (\sigma_{BAL \le 10000} (account))$

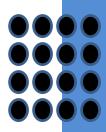
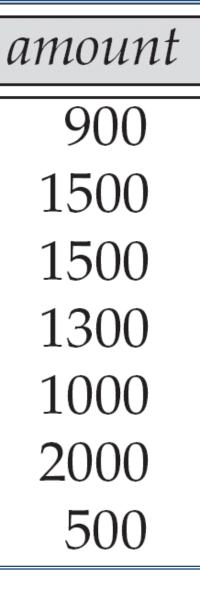
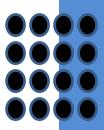

Slide 65 of 96

Figure 2.3. The branch relation

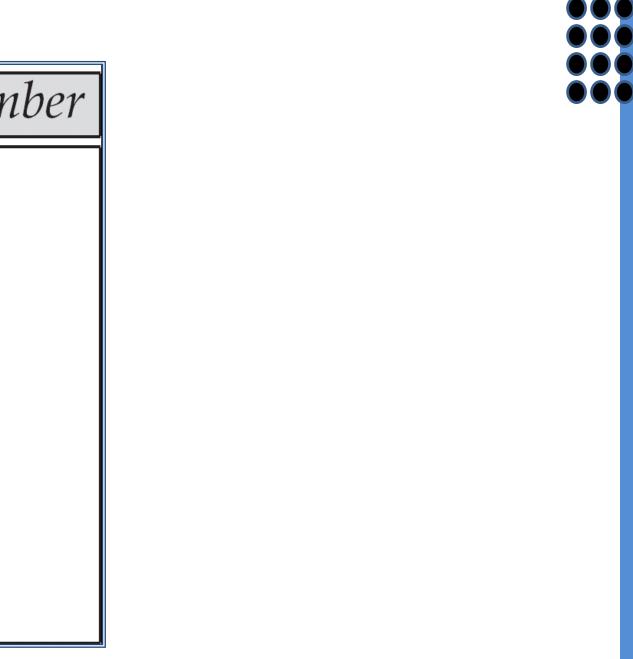
sort.
SEMINS
2 1 A

branch_name	branch_city	a
Brighton	Brooklyn	71
Downtown	Brooklyn	900
Mianus	Horseneck	4
North Town	Rye	370
Perryridge	Horseneck	170
Pownal	Bennington	30
Redwood	Palo Alto	210
Round Hill	Horseneck	800

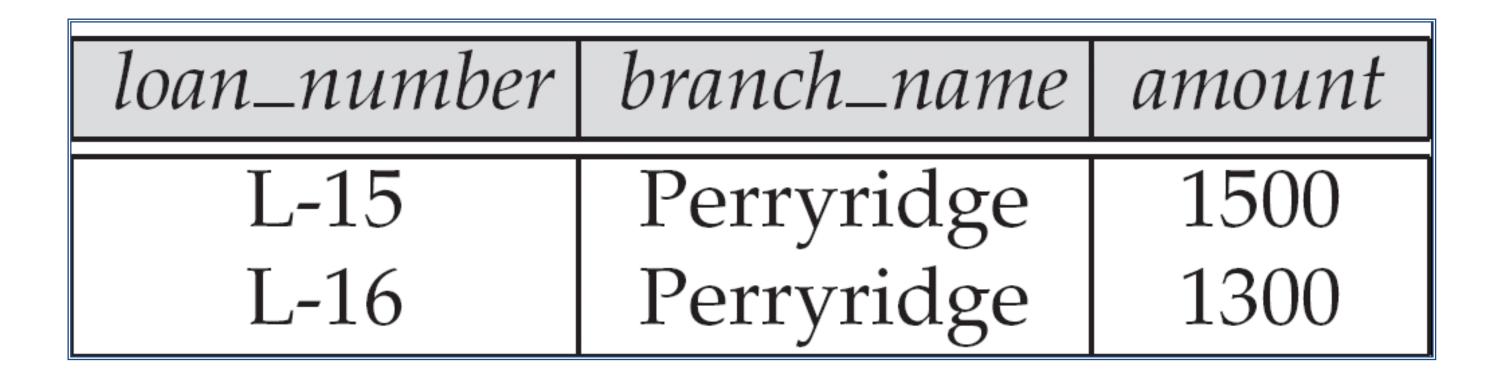

issets

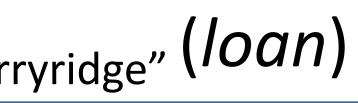

Figure 2.6: The *loan* relation

loan_number	branch_name	
L-11	Round Hill	
L-14	Downtown	
L-15	Perryridge	
L-16	Perryridge	
L-17	Downtown	
L-23	Redwood	
L-93	Mianus	

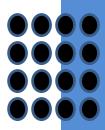


Slide 67 of 96

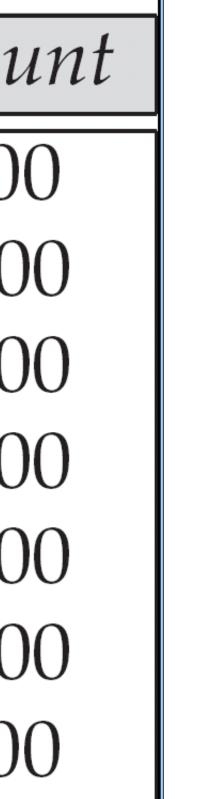

customer_name	loan_num
Adams	L-16
Curry	L-93
Hayes	L-15
Jackson	L-14
Jones	L-17
Smith	L - 11
Smith	L-23
Williams	L-17



Slide 68 of 96



Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT



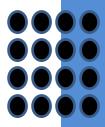
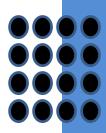

Slide 69 of 96

Figure 2.10: Loan number and the amount of the loan

Slide 70 of 96

loan

customer_name Adams Curry Hayes Jackson Jones Smith Williams Lindsay Johnson Turner


Slide 71 of 96

customer_name Johnson Lindsay Turner

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 72 of 96

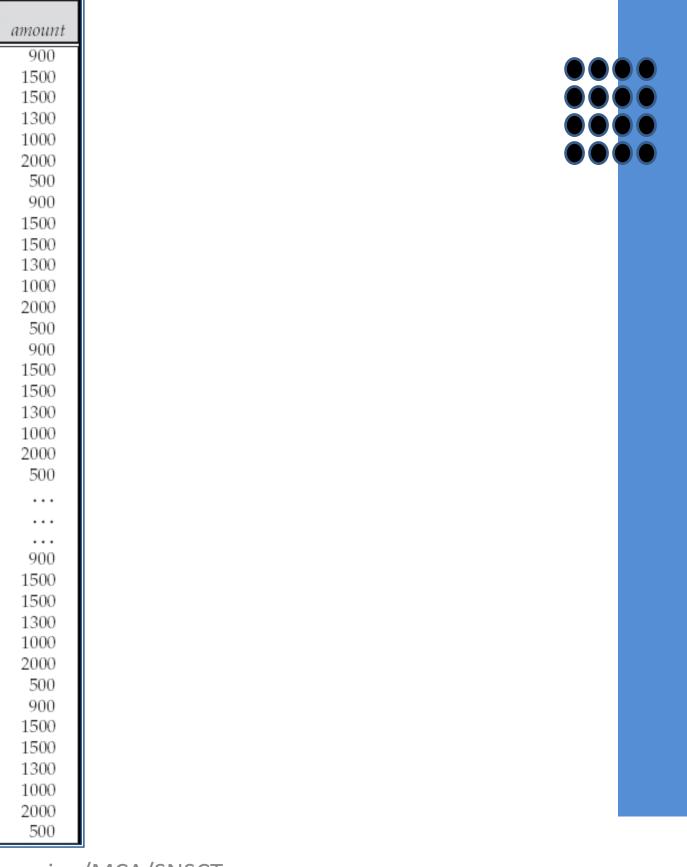


Figure 2.13: Result of *borrower* |X| *loan*

	borrower.	loan.		
customer_name	loan_number	loan_number	branch_name	an
Adams	L-16	L-11	Round Hill	
Adams	L-16	L-14	Downtown	1
Adams	L-16	L-15	Perryridge	1
Adams	L-16	L-16	Perryridge	1
Adams	L-16	L-17	Downtown	1
Adams	L-16	L-23	Redwood	2
Adams	L-16	L-93	Mianus	
Curry	L-93	L-11	Round Hill	
Curry	L-93	L-14	Downtown	
Curry	L-93	L-15	Perryridge	1
Curry	L-93	L-16	Perryridge	1
Curry	L-93	L-17	Downtown	
Curry	L-93	L-23	Redwood	
Curry	L-93	L-93	Mianus	
Hayes	L-15	L-11		
Hayes	L-15	L-14		
Hayes	L-15	L-15		
Hayes	L-15	L-16		
Hayes	L-15	L-17		
Hayes	L-15	L-23		1
Hayes	L-15	L-93		
			···	
Smith	L-23	L-11	Round Hill	
Smith	L-23	L-14	Downtown	
Smith	L-23	L-15	Perryridge	
Smith	L-23	L-16	Perryridge	
Smith	L-23	L-17	Downtown	
Smith	L-23	L-23	Redwood	1
Smith	L-23	L-93	Mianus David Hill	
Williams	L-17	L-11	Round Hill	,
Williams	L-17	L-14	Downtown	
Williams	L-17	L-15	Perryridge	
Williams	L-17	L-16	Perryridge	
Williams	L-17	L-17	Downtown	
Williams	L-17	L-23	Redwood	
Williams	L-17	L-93	Mianus	

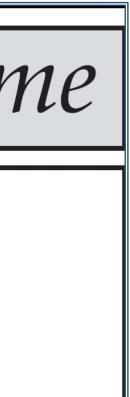
Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 73 of 96

	borrower.	loan.		
customer_name	loan_number	loan_number	branch_name	amount
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Hayes	L-15	L-15	Perryridge	1500
Hayes	L-15	L-16	Perryridge	1300
Jackson	L-14	L-15	Perryridge	1500
Jackson	L-14	L-16	Perryridge	1300
Jones	L-17	L-15	Perryridge	1500
Jones	L-17	L-16	Perryridge	1300
Smith	L-11	L-15	Perryridge	1500
Smith	L-11	L-16	Perryridge	1300
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300

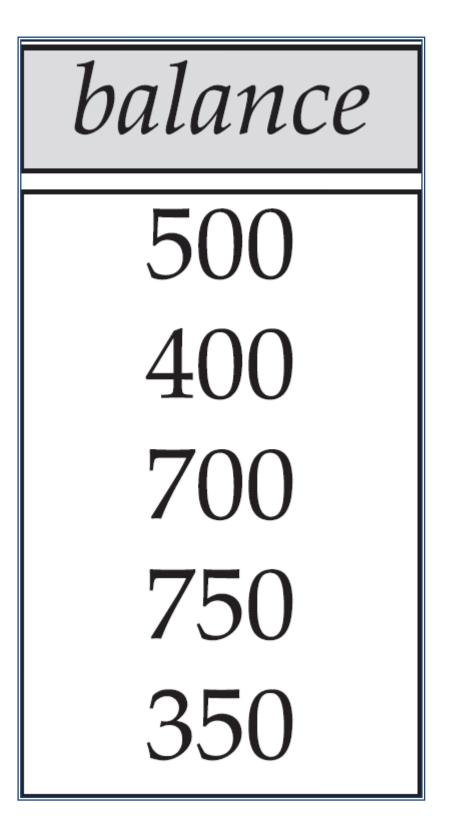
Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 74 of 96


customer_name

Adams Hayes

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT



Slide 75 of 96

Slide 76 of 96

Figure 2.17 Largest account balance in the bank

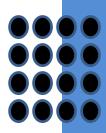
balance 900

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 77 of 96

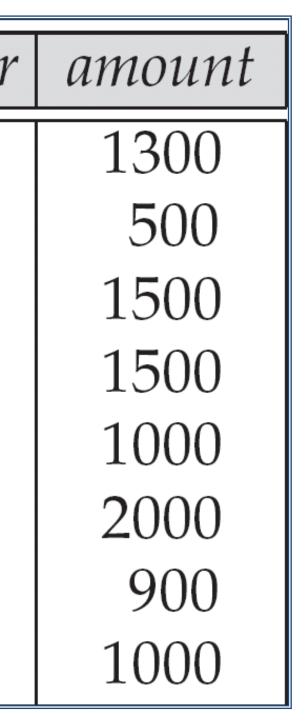
customer_name Curry Smith

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT


Slide 78 of 96

customer_name Hayes Jones Smith

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT



Slide 79 of 96

customer_name	loan_number
Adams	L-16
Curry	L-93
Hayes	L-15
Jackson	L-14
Jones	L-17
Smith	L-23
Smith	L-11
Williams	L-17

Slide 80 of 96

branch_name

Brighton Perryridge

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 81 of 96

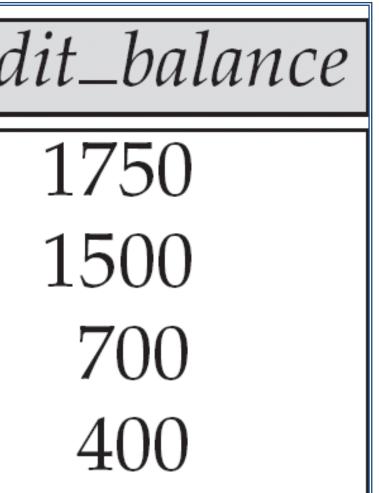
branch_name

Brighton Downtown

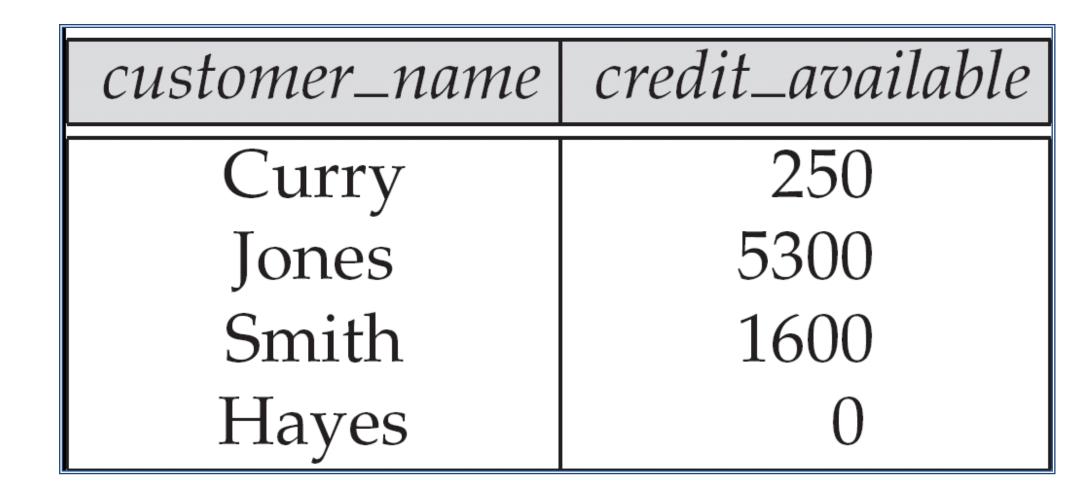
Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 82 of 96

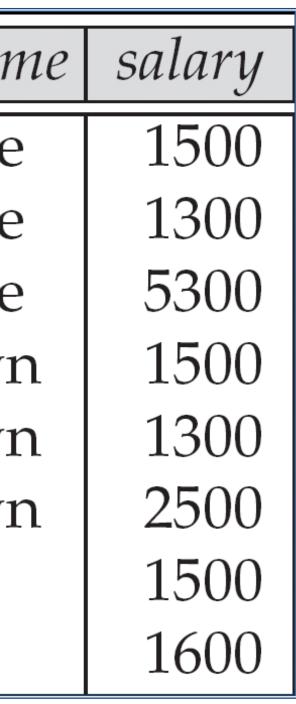
customer_name	branch_
Hayes	Perryri
Johnson	Downt
Johnson	Brighte
Jones	Brighte
Lindsay	Redwo
Smith	Mianus
Turner	Round



Slide 83 of 96


customer_name	limit	crec
Curry	2000	
Hayes	1500	
Jones	6000	
Smith	2000	

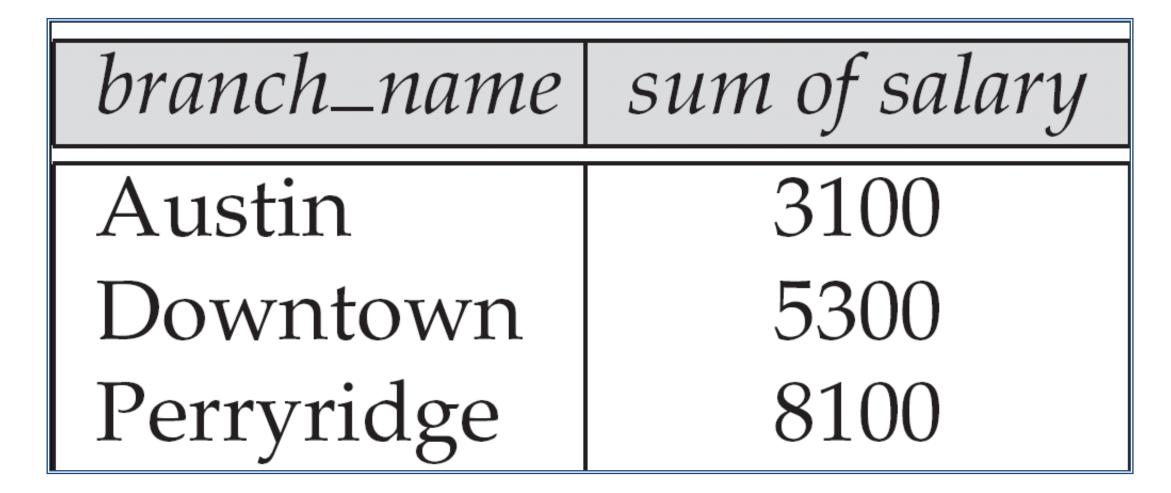
Slide 84 of 96



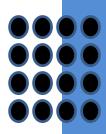
Slide 85 of 96

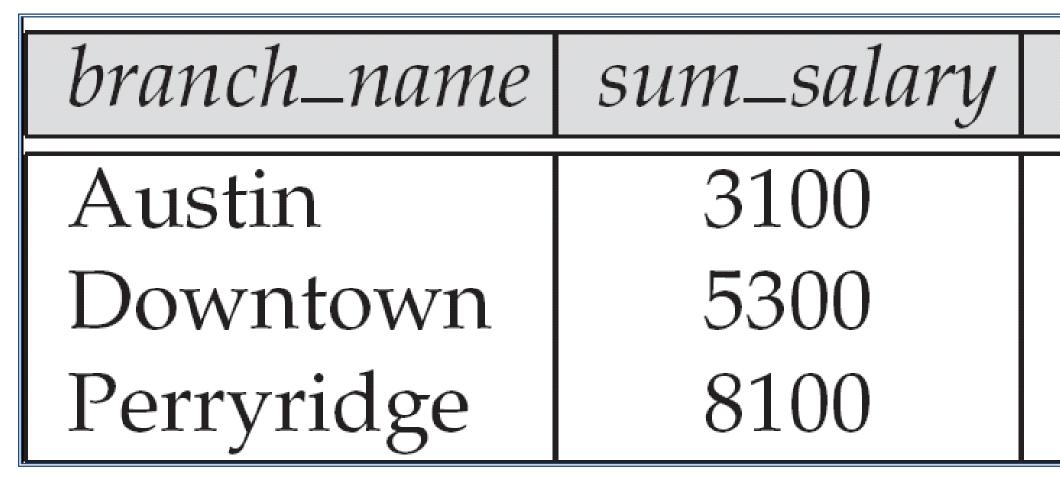
employee_name	branch_nar
Adams	Perryridge
Brown	Perryridge
Gopal	Perryridge
Johnson	Downtow
Loreena	Downtow
Peterson	Downtow
Rao	Austin
Sato	Austin

Slide 86 of 96



employee_name	branch_name
Rao	Austin
Sato	Austin
Johnson	Downtown
Loreena	Downtown
Peterson	Downtown
Adams	Perryridge
Brown	Perryridge
Gopal	Perryridge

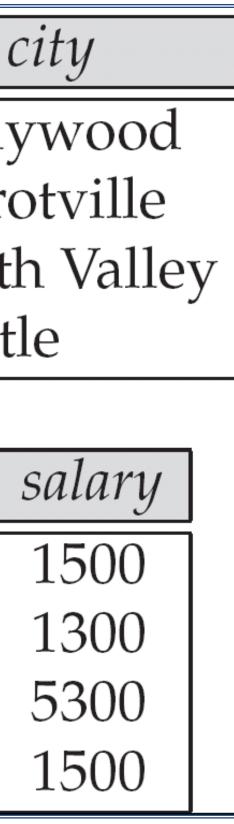

Slide 87 of 96


Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT



Slide 88 of 96

max_salary


1600 25005300

Slide 89 of 96

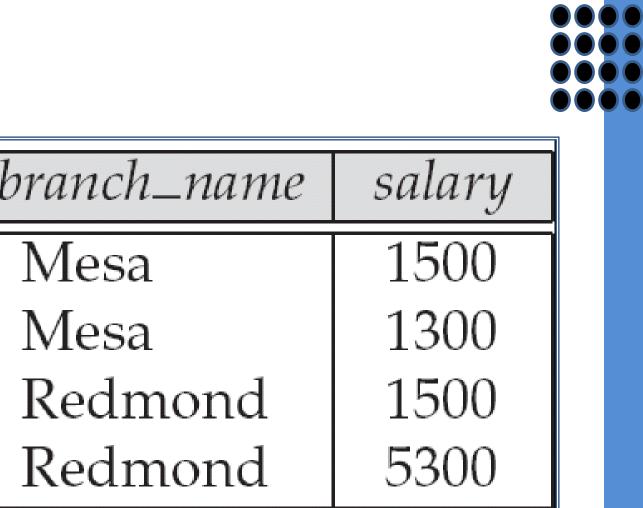
e	mployee_name	street			(
	Coyote	Τ	oon	Hol	ly
	Rabbit	Т	unnel	Carı	r
	Smith	R	Revolver	Dea	t
	Williams	Seaview		Seat	t
	employee_nan	10	branch_1	name	
	Coyote Mesa				
	Rabbit		Mesa		
	Gates		Redmond		
	Williams		Redmo	nd	

Slide 90 of 96

employee_name	street	city	branch_name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500

Slide 91 of 96

employee_name	street	city	branch_name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null



Slide 92 of 96

employee_name	street	city	ł
Coyote	Toon	Hollywood	
Rabbit	Tunnel	Carrotville	
Williams	Seaview	Seattle	
Gates	null	null	

Slide 93 of 96

employee_name	street	city	branch_name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null
Gates	null	null	Redmond	5300

- 1. <u>https://www.javatpoint.com/dbms-data-model-schema-and-instance</u>
- 2. <u>https://hirinfotech.com/structured-vs-unstructured-data/</u>

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 95 of 96

THANK YOU

Topic IV – Relational algebra and Calculus /Dr.S.Sundararajan/MCA/SNSCT

Slide 96 of 96