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Network Security

It is true greatness to have in one the frailty of a man and the security of a god.

–Seneca

C
omputer networks are typically a shared resource used by many

applications representing different interests. The Internet is par-

ticularly widely shared, being used by competing businesses, mutu-

ally antagonistic governments, and opportunistic criminals. Unless

security measures are taken, a network conversation or a dis-

tributed application may be compromised by an adversary.

Consider some threats to secure use of, for example, the World

Wide Web. Suppose you are a customer using a credit card to

order an item from a website. An obvious threat is that an

adversary would eavesdrop on your network communica-

PROBLEM: SECURITY ATTACKS

tion, reading yourmessages to obtain your credit card infor-

mation. Howmight that eavesdropping be accomplished? It

is trivial on a broadcast network such as an Ethernet, where

any node can be configured to receive all the message traffic

on that network. Wireless communication can be monitored

without any physical connection. More elaborate approaches

include wiretapping and planting spy software on any of the

chain of nodes involved. Only in the most extreme cases (e.g.,

national security) are serious measures taken to prevent such

monitoring, and the Internet is not one of those cases. It is possible
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and practical, however, to encrypt messages so as to prevent an adversary from

understanding the message contents. A protocol that does so is said to provide

confidentiality. Taking the concept a step farther, concealing the quantity or desti-

nation of communication is called traffic confidentiality—because merely knowing

how much communication is going where can be useful to an adversary in some

situations.

Even with confidentiality there still remains threats for the website customer.

An adversary who can’t read the contents of your encrypted message might still

be able to change a few bits in it, resulting in a valid order for, say, a completely

different item or perhaps 1000 units of the item. There are techniques to detect, if

not prevent, such tampering. A protocol that detects such message tampering pro-

vides data integrity. The adversary could alternatively transmit an extra copy of your

message in a replay attack. To the website, it would appear as though you had sim-

ply ordered another of the same item you ordered the first time. A protocol that

detects replays provides originality. Originality would not, however, preclude the

adversary intercepting your order, waiting a while, then transmitting it—in effect,

delaying your order. The adversary could thereby arrange for the item to arrive on

your doorstepwhile you are away on vacation, when it can be easily snatched. A pro-

tocol that detects such delaying tactics is said to provide timeliness. Data integrity,

originality, and timeliness are considered aspects of the more general property of

integrity.

Another threat to the customer is unknowingly being directed to a false website.

This can result from a Domain Name System (DNS) attack, in which false information

is entered in a DNS server or the name service cache of the customer’s computer.

This leads to translating a correct URL into an incorrect IP address—the address of a

false website. A protocol that ensures that you really are talking to whom you think

you’re talking is said to provide authentication. Authentication entails integrity, since

it is meaningless to say that a message came from a certain participant if it is no

longer the same message.

The owner of the website can be attacked as well. Some websites have been

defaced; the files that make up the website content have been remotely accessed

and modified without authorization. That is an issue of access control: enforcing the

rules regardingwho is allowed to dowhat.Websites have also been subject to denial

of service (DoS) attacks, during which would-be customers are unable to access the

website because it is being overwhelmed by bogus requests. Ensuring a degree of

access is called availability.

In addition to these issues, the Internet has notably been used as a means for

deployingmalicious code that exploits vulnerabilities in end systems.Worms, pieces

of self-replicating code that spread over networks, have been known for several

decades and continue to cause problems, as do their relatives, viruses, which are

spread by the transmission of infected files. Infectedmachines can then be arranged
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into botnets, which can be used to inflict further harm, such as launching DoS

attacks.

Although the Internet was designed with the redundancy to survive problems

such as the disruption of a link or router, it was not originally designed to pro-

vide the kind of security we have been discussing. Internet security mechanisms

have essentially been patches. If a comprehensive redesign of the Internet were

to take place, integrating security would likely be the foremost driving factor. That

possibility makes this chapter all the more pertinent.

There are many tools today for securing networked systems, ranging from vari-

ous forms of cryptography to specialized devices such as firewalls. This chapter will

provide an introduction to these tools with a particular focus on the use of crypto-

graphic methods to improve network security. Improving the security of networks

continues to be a field of rapid change and considerable research effort.

8.1 CRYPTOGRAPHIC BUILDING BLOCKS

We introduce the concepts of cryptography-based security step by step.

The first step is the cryptographic algorithms—ciphers and crypto-

graphic hashes—that are introduced in this section. They are not a solu-

tion in themselves, but rather building blocks from which a solution

can be built. Cryptographic algorithms are parameterized by keys, and

Section 8.2 addresses the problem of distributing the keys. In the next step

(Section 8.3), we describe how to incorporate the cryptographic build-

ing blocks into protocols that provide secure communication between

participants who possess the correct keys. Finally, Section 8.4 examines

several complete security protocols and systems in current use.

8.1.1 Principles of Ciphers

Encryption transforms a message in such a way that it becomes unintel-

ligible to any party that does not have the secret of how to reverse the

transformation. The sender applies an encryption function to the original

plaintext message, resulting in a ciphertext message that is sent over the

network, as shown in Figure 8.1. The receiver applies a secret decryption

function—the inverse of the encryption function—to recover the original

plaintext. The ciphertext transmitted across the network is unintelligi-

ble to any eavesdropper, assuming the eavesdropper doesn’t know the
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n FIGURE 8.1 Symmetric-key encryption and decryption.

decryption function. The transformation represented by an encryption

function and its corresponding decryption function is called a cipher.

Cryptographers have been led to the principle, first stated in 1883,

that encryption and decryption functions should be parameterized by

a key, and furthermore that the functions should be considered public

knowledge—only the key need be secret. Thus, the ciphertext produced

for a given plaintext message depends on both the encryption function

and the key. One reason for this principle is that if you depend on the

cipher being kept secret, then you have to retire the cipher (not just the

keys) when you believe it is no longer secret. This means potentially fre-

quent changes of cipher, which is problematic since it takes a lot of work

to develop a new cipher. Also, one of the best ways to know that a cipher is

secure is to use it for a long time—if no one breaks it, it’s probably secure.

(Fortunately, there are plenty of people who will try to break ciphers and

who will let it be widely known when they have succeeded, so no news is

generally good news.) Thus, there is considerable cost and risk in deploy-

ing a new cipher. Finally, parameterizing a cipher with keys provides us

with what is in effect a very large family of ciphers; by switching keys,

we essentially switch ciphers, thereby limiting the amount of data that

a cryptanalyst (code-breaker) can use to try to break our key/cipher and

the amount she can read if she succeeds.
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The basic requirement for an encryption algorithm is that it turn plain-

text into ciphertext in such a way that only the intended recipient—the

holder of the decryption key—can recover the plaintext. What this means

is that encrypted messages cannot be read by people who do not hold

the key.

It is important to realize that when a potential attacker receives a piece

of ciphertext, he may have more information at his disposal than just the

ciphertext itself. For example, he may know that the plaintext was written

in English, which means that the letter e occurs more often in the plaintext

that any other letter; the frequency of many other letters and common

letter combinations can also be predicted. This information can greatly

simplify the task of finding the key. Similarly, he may know something

about the likely contents of the message; for example, the word “login”

is likely to occur at the start of a remote login session. This may enable a

known plaintext attack, which has a much higher chance of success than

a ciphertext only attack. Even better is a chosen plaintext attack, which

may be enabled by feeding some information to the sender that you know

the sender is likely to transmit—such things have happened in wartime,

for example.

The best cryptographic algorithms, therefore, can prevent the attacker

from deducing the key even when the individual knows both the plain-

text and the ciphertext. This leaves the attacker with no choice but to

try all the possible keys—exhaustive, “brute force” search. If keys have n

bits, then there are 2n possible values for a key (each of the n bits could

be either a zero or a one). An attacker could be so lucky as to try the

correct value immediately, or so unlucky as to try every incorrect value

before finally trying the correct value of the key, having tried all 2n possi-

ble values; the average number of guesses to discover the correct value is

halfway between those extremes, 2n/2. This can be made computation-

ally impractical by choosing a sufficiently large key space and by making

the operation of checking a key reasonably costly. What makes this diffi-

cult is that computing speeds keep increasing, making formerly infeasible

computations feasible. Furthermore, although we are concentrating on

the security of data as it moves through the network—that is, the data is

sometimes vulnerable for only a short period of time—in general, secu-

rity people have to consider the vulnerability of data that needs to be

stored in archives for tens of years. This argues for a generously large

key size. On the other hand, larger keys make encryption and decryption

slower.
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Most ciphers are block ciphers; they are defined to take as input a

plaintext block of a certain fixed size, typically 64 to 128 bits. Using a

block cipher to encrypt each block independently—known as electronic

codebook (ECB) mode encryption—has the weakness that a given plain-

text block value will always result in the same ciphertext block. Hence,

recurring block values in the plaintext are recognizable as such in the

ciphertext, making it much easier for a cryptanalyst to break the cipher.

To prevent this, block ciphers are always augmented to make the

ciphertext for a block vary depending on context. Ways in which a block

cipher may be augmented are called modes of operation. A common mode

of operation is cipher block chaining (CBC), in which each plaintext block

is XORed with the previous block’s ciphertext before being encrypted. The

result is that each block’s ciphertext depends in part on the preceding

blocks (i.e., on its context). Since the first plaintext block has no preceding

block, it is XORed with a random number. That random number, called an

initialization vector (IV), is included with the series of ciphertext blocks

so that the first ciphertext block can be decrypted. This mode is illus-

trated in Figure 8.2. Another mode of operation is counter mode, in which

successive values of a counter (e.g., 1, 2, 3, . . .) are incorporated into the

encryption of successive blocks of plaintext.

8.1.2 Symmetric-Key Ciphers

In a symmetric-key cipher, both participants1 in a communication share

the same key. In other words, if a message is encrypted using a particu-

lar key, the same key is required for decrypting the message. If the cipher

illustrated in Figure 8.1 were a symmetric-key cipher, then the encryption

and decryption keys would be identical. Symmetric-key ciphers are also

known as secret-key ciphers since the shared key must be known only to

the participants. (We’ll take a look at the alternative, public-key ciphers,

shortly.)

The U.S. National Institute of Standards and Technology (NIST) has

issued standards for a series of symmetric-key ciphers. Data Encryption

Standard (DES) was the first, and it has stood the test of time in that no

cryptanalytic attack better than brute force search has been discovered.

1We use the term participant for the parties involved in a secure communication since

that is the term we have been using throughout the book to identify the two endpoints

of a channel. In the security world, they are typically called principals.
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Brute force search, however, has gotten faster. DES’s keys (56 indepen-

dent bits) are now too small given current processor speeds. DES keys

have 56 independent bits (although they have 64 bits in total; the last bit

of every byte is a parity bit). As noted above, you would, on average, have

to search half of the space of 256 possible keys to find the right one, giv-

ing 255 = 3.6× 1016 keys. That may sound like a lot, but such a search is

highly parallelizable, so it’s possible to throw as many computers at the

task as you can get your hands on—and these days it’s easy to lay your

hands on thousands of computers (Amazon.com will rent them to you for

a few cents an hour, for example). By the late 1990s, it was already possi-

ble to recover a DES key after a few hours. Consequently, NIST updated

the DES standard in 1999 to indicate that DES should only be used for

legacy systems.

NIST also standardized the cipher Triple DES (3DES), which leverages

the cryptanalysis resistance of DES while in effect increasing the key size.

A 3DES key has 168 (= 3× 56) independent bits, and is used as three DES
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keys; let’s call them DES-key1, DES-key2, and DES-key3. 3DES encryption

of a block is performed by first DES encrypting the block using DES-

key1, then DES decrypting the result using DES-key2, and finally DES

encrypting that result using DES-key3. Decryption involves decrypting

using DES-key3, then encrypting using DES-key2, then decrypting using

DES-key1.2

Although 3DES solves DES’s key-length problem, it inherits some other

shortcomings. Software implementations of DES/3DES are slow because

it was originally designed, by IBM, for implementation in hardware. Also,

DES/3DES uses a 64-bit block size; a larger block size is more efficient and

more secure.

3DES is being superseded by the Advanced Encryption Standard (AES)

standard issued by NIST in 2001. The cipher selected to become that

standard (with a few minor modifications) was originally named Rijndael

(pronounced roughly like “Rhine dahl”) based on the names of its inven-

tors, Daemen and Rijmen. AES supports key lengths of 128, 192, or 256

bits, and the block length is 128 bits. AES permits fast implementations

in both software and hardware. It doesn’t require much memory, which

makes it suitable for small mobile devices. AES has some mathematically

proven security properties and, as of the time of writing, has not suffered

from any significant successful attacks.3

8.1.3 Public-Key Ciphers

An alternative to symmetric-key ciphers is asymmetric, or public-key,

ciphers. Instead of a single key shared by two participants, a public-key

cipher uses a pair of related keys, one for encryption and a different one

for decryption. The pair of keys is “owned” by just one participant. The

owner keeps the decryption key secret so that only the owner can decrypt

messages; that key is called the private key. The owner makes the encryp-

tion key public, so that anyone can encrypt messages for the owner; that

2The reason 3DES encryption uses DES decryption with DES-key2 is to interoperate

with legacy DES systems. If a legacy DES system uses a single key, then a 3DES system

can perform the same encryption function by using that key for each of DES-key1, DES-

key2, and DES-key3; in the first two steps, we encrypt and then decrypt with the same

key, producing the original plaintext, which we then encrypt again.
3Since anything that can recover the plaintext with less computational effort than sheer

brute force is technically classified as an attack, there are some forms of attack on AES

that have been published. While they do somewhat better than brute force, they remain

computationally very expensive.
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key is called the public key. Obviously, for such a scheme to work, it must

not be possible to deduce the private key from the public key. Conse-

quently, any participant can get the public key and send an encrypted

message to the owner of the keys, and only the owner has the private key

necessary to decrypt it. This scenario is depicted in Figure 8.3.

Because it is somewhat unintuitive, we emphasize that the public

encryption key is useless for decrypting a message—you couldn’t even

decrypt a message that you yourself had just encrypted unless you had the

private decryption key. If we think of keys as defining a communication

channel between participants, then another difference between public-

key and symmetric-key ciphers is the topology of the channels. A key

for a symmetric-key cipher provides a channel that is two-way between

two participants—each participant holds the same (symmetric) key that

either one can use to encrypt or decrypt messages in either direction.

A public/private key pair, in contrast, provides a channel that is one way

and many to one from everyone who has the public key to the (unique)

owner of the private key, as illustrated in Figure 8.3.
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An important additional property of public-key ciphers is that the

private “decryption” key can be used with the encryption algorithm to

encrypt messages so that they can only be decrypted using the public

“encryption” key. This property clearly wouldn’t be useful for confiden-

tiality since anyone with the public key could decrypt such a message.

(Indeed, for two-way confidentiality between two participants, each par-

ticipant needs its own pair of keys, and each encrypts messages using

the other’s public key.) This property is, however, useful for authentica-

tion since it tells the receiver of such a message that it could only have

been created by the owner of the keys (subject to certain assumptions

that we will get into later). This is illustrated in Figure 8.4. It should

be clear from the figure that anyone with the public key can decrypt

the encrypted message, and, assuming that the result of the decryption

matches the expected result, it can be concluded that the private key must

have been used to perform the encryption. Exactly how this operation

is used to provide authentication is the topic of Section 8.3. As we will

see, public-key ciphers are used primarily for authentication and to con-

fidentially distribute symmetric keys, leaving the rest of confidentiality to

symmetric-key ciphers.

A bit of interesting history: The concept of public-key ciphers was

first published in 1976 by Diffie and Hellman. Subsequently, however,

documents have come to light proving that Britain’s Communications-

Electronics Security Group had discovered public-key ciphers by 1970,

and the U.S. National Security Agency (NSA) claims to have discovered

them in the mid-1960s.

The best-known public-key cipher is RSA, named after its inventors:

Rivest, Shamir, and Adleman. RSA relies on the high computational cost
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n FIGURE 8.4 Authentication using public keys.
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of factoring large numbers. The problem of finding an efficient way to fac-

tor numbers is one that mathematicians have worked on unsuccessfully

since long before RSA appeared in 1978, and RSA’s subsequent resistance

to cryptanalysis has further bolstered confidence in its security. Unfortu-

nately, RSA needs relatively large keys, at least 1024 bits, to be secure. This

is larger than keys for symmetric-key ciphers because it is faster to break

an RSA private key by factoring the large number on which the pair of keys

is based than by exhaustively searching the key space.

Another public-key cipher is ElGamal. Like RSA, it relies on a mathe-

matical problem, the discrete logarithm problem, for which no efficient

solution has been found, and requires keys of at least 1024 bits. There is a

variation of the discrete logarithm problem, arising when the input is an

elliptic curve, that is thought to be even more difficult to compute; cryp-

tographic schemes based on this problem are referred to as elliptic curve

cryptography.

Public-key ciphers are, unfortunately, several orders of magnitude

slower than symmetric-key ciphers. Consequently, symmetric-key ci-

phers are used for the vast majority of encryption, while public-key

ciphers are reserved for use in authentication (Section 8.1.4) and session

key establishment (Section 8.2).

8.1.4 Authenticators

Encryption alone does not provide data integrity. For example, just ran-

domly modifying a ciphertext message could turn it into something

that decrypts into valid-looking plaintext, in which case the tampering

would be undetectable by the receiver. Nor does encryption alone pro-

vide authentication. It is not much use to say that a message came from

a certain participant if the contents of the message have been modified

after that participant created it. In a sense, integrity and authentication

are fundamentally inseparable.

An authenticator is a value, to be included in a transmitted message,

that can be used to verify simultaneously the authenticity and the data

integrity of a message. We will see how authenticators can be used in pro-

tocols to Section 8.3. For now, we focus on the algorithms that produce

authenticators.

You should recall that in Section 2.4.3 we looked at checksums and

cyclic redundancy checks (CRCs)—added pieces of information sent with
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the original message—as ways of detecting when a message has been

inadvertently modified by bit errors. A similar concept applies to authen-

ticators, with the added challenge that the corruption of the message is

likely to be deliberately performed by someone who wants the corruption

to go undetected. To support authentication, an authenticator includes

some proof that whoever created the authenticator knows a secret that is

known only to the alleged sender of the message; for example, the secret

could be a key, and the proof could be some value encrypted using the key.

There is a mutual dependency between the form of the redundant infor-

mation and the form of the proof of secret knowledge. We discuss several

workable combinations.

We initially assume that the original message need not be con-

fidential—that a transmitted message will consist of the plaintext of the

original message plus an authenticator. Later we will consider the case

where confidentiality is desired.

One kind of authenticator combines encryption and a cryptographic

hash function. Cryptographic hash algorithms are treated as public

knowledge, as with cipher algorithms. A cryptographic hash function

(also known as a cryptographic checksum) is a function that outputs suf-

ficient redundant information about a message to expose any tampering.

Just as a checksum or CRC exposes bit errors introduced by noisy links,

a cryptographic checksum is designed to expose deliberate corruption of

messages by an adversary. The value it outputs is called a message digest

and, like an ordinary checksum, is appended to the message. All the mes-

sage digests produced by a given hash have the same number of bits

regardless of the length of the original message. Since the space of possi-

ble input messages is larger than the space of possible message digests,

there will be different input messages that produce the same message

digest, like collisions in a hash table.

An authenticator can be created by encrypting the message digest.

The receiver computes a digest of the plaintext part of the message and

compares that to the decrypted message digest. If they are equal, then

the receiver would conclude that the message is indeed from its alleged

sender (since it would have to have been encrypted with the right key)

and has not been tampered with. No adversary could get away with send-

ing a bogus message with a matching bogus digest because she would not

have the key to encrypt the bogus digest correctly. An adversary could,

however, obtain the plaintext original message and its encrypted digest
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by eavesdropping. The adversary could then (since the hash function is

public knowledge) compute the digest of the original message and gener-

ate alternative messages looking for one with the same message digest. If

she finds one, she could undetectably send the new message with the old

authenticator. Therefore, security requires that the hash function have the

one-way property: It must be computationally infeasible for an adversary

to find any plaintext message that has the same digest as the original.

For a hash function to meet this requirement, its outputs must be

fairly randomly distributed. For example, if digests are 128 bits long and

randomly distributed, then you would need to try 2127 messages, on aver-

age, before finding a second message whose digest matches that of a

given message. If the outputs are not randomly distributed—that is, if

some outputs are much more likely than others—then for some messages

you could find another message with the same digest much more easily

than this, which would reduce the security of the algorithm. If you were

instead just trying to find any collision—any two messages that produce

the same digest—then you would need to compute the digests of only

264 messages, on average. This surprising fact is the basis of the “birthday

attack”—see the exercises for more details.

There are several common cryptographic hash algorithms, including

Message Digest 5 (MD5) and Secure Hash Algorithm 1 (SHA-1). MD5 out-

puts a 128-bit digest, and SHA-1 outputs a 160-bit digest. Weaknesses of

MD5 have been known for some time, which led to recommendations

to shift from MD5 to SHA-1. More recently, researchers have discovered

techniques that find SHA-1 collisions somewhat more efficiently than

brute force, but they are not yet computationally feasible. Although col-

lision attacks (attacks based on finding any collision) are not as great a

risk as preimage attacks (attacks based on finding a second message that

collides with a given first message), these are nonetheless serious weak-

nesses. NIST recommended phasing out SHA-1 by 2010, in favor of four

variants of SHA that are collectively known as SHA-2. There is an ongoing

competition to devise a new hash known as SHA-3.

When generating an encrypted message digest, the digest encryp-

tion could use either a symmetric-key cipher or a public-key cipher. If

a public-key cipher is used, the digest would be encrypted using the

sender’s private key (the one we normally think of as being used for

decryption), and the receiver—or anyone else—could decrypt the digest

using the sender’s public key.
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A digest encrypted with a public key algorithm but using the private

key is called a digital signature because it provides nonrepudiation like

a written signature. The receiver of a message with a digital signature

can prove to any third party that the sender really sent that message,

because the third party can use the sender’s public key to check for her-

self. (Symmetric-key encryption of a digest does not have this property

because only the two participants know the key; furthermore, since both

participants know the key, the alleged receiver could have created the

message herself.) Any public-key cipher can be used for digital signa-

tures. Digital Signature Standard (DSS) is a digital signature format that

has been standardized by NIST. DSS signatures may use any one of three

public-key ciphers, one based on RSA, another on ElGamal, and a third

called the Elliptic Curve Digital Signature Algorithm.

Another kind of authenticator is similar, but instead of encrypting a

hash it uses a hash-like function that takes a secret value (known to only

the sender and the receiver) as a parameter, as illustrated in Figure 8.5.

Such a function outputs an authenticator called a message authentication

code (MAC). The sender appends the MAC to her plaintext message. The

receiver recomputes the MAC using the plaintext and the secret value and

compares that recomputed MAC to the received MAC.

A common variation on MACs is to apply a cryptographic hash (such

as MD5 or SHA-1) to the concatenation of the plaintext message and

Plaintext Secret value

MAC algorithm

MAC to append to message

(a)
Plaintext Secret value

Hash algorithm

HMAC to append to message

Plaintext Secret value

Concatenate

(b)

n FIGURE 8.5 Computing a MAC (a) versus computing an HMAC (b).
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the secret value, as illustrated in Figure 8.5. The resulting digest is called

a hashed message authentication code (HMAC) since it is essentially a

MAC. The HMAC, but not the secret value, is appended to the plaintext

message. Only a receiver who knows the secret value can compute the

correct HMAC to compare with the received HMAC. If it weren’t for

the one-way property of the hash, an adversary might be able to find

the input that generated the HMAC and compare it to the plaintext

message to determine the secret value.

Up to this point, we have been assuming that the message wasn’t confi-

dential, so the original message could be transmitted as plaintext. To add

confidentiality to a message with an authenticator, it suffices to encrypt

the concatenation of the entire message including its authenticator—the

MAC, HMAC, or encrypted digest. Remember that, in practice, confiden-

tiality is implemented using symmetric-key ciphers because they are so

much faster than public-key ciphers. Furthermore, it costs little to include

the authenticator in the encryption, and it increases security. A common

simplification is to encrypt the message with its (raw) digest, such that the

digest is only encrypted once; in this case, the entire ciphertext message

is considered to be an authenticator.

Although authenticators may seem to solve the authentication prob-

lem, we will see in Section 8.3 that they are only the foundation of a

solution. First, however, we address the issue of how participants obtain

keys in the first place.

8.2 KEY PREDISTRIBUTION

To use ciphers and authenticators, the communicating participants need

to know what keys to use. In the case of a symmetric-key cipher, how does

a pair of participants obtain the key they share? In the case of a public-

key cipher, how do participants know what public key belongs to a certain

participant? The answer differs depending on whether the keys are short-

lived session keys or longer-lived predistributed keys.

A session key is a key used to secure a single, relatively short episode of

communication: a session. Each distinct session between a pair of par-

ticipants uses a new session key, which is always a symmetric key for

speed. The participants determine what session key to use by means of a

protocol—a session key establishment protocol. A session key establish-

ment protocol needs its own security (so that, for example, an adversary
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cannot learn the new session key); that security is based on the longer-

lived predistributed keys.

There are several motivations for this division of labor between session

keys and predistributed keys:

n Limiting the amount of time a key is used results in less time for

computationally intensive attacks, less ciphertext for cryptanalysis,

and less information exposed should the key be broken.

n Predistribution of symmetric keys is problematic.

n Public key ciphers are generally superior for authentication and

session key establishment but too slow to use for encrypting entire

messages for confidentiality.

This section explains how predistributed keys are distributed, and

Section 8.3 will explain how session keys are then established. We hence-

forth use “Alice” and “Bob” to designate participants, as is common in

the cryptography literature. Bear in mind that although we tend to refer

to participants in anthropomorphic terms, we are more frequently con-

cerned with the communication between software or hardware entities

such as clients and servers that often have no direct relationship with any

particular person.

8.2.1 Predistribution of Public Keys

The algorithms to generate a matched pair of public and private keys

are publicly known, and software that does it is widely available. So, if

Alice wanted to use a public-key cipher, she could generate her own pair

of public and private keys, keep the private key hidden, and publicize

the public key. But, how can she publicize her public key—assert that it

belongs to her—in such a way that other participants can be sure it really

belongs to her? Not via email or Web, because an adversary could forge an

equally plausible claim that key x belongs to Alice when x really belongs

to the adversary.

A complete scheme for certifying bindings between public keys and

identities—what key belongs to whom—is called a Public Key Infrastruc-

ture (PKI). A PKI starts with the ability to verify identities and bind them

to keys out of band. By “out of band,” we mean something outside the

network and the computers that comprise it, such as in the following

scenarios. If Alice and Bob are individuals who know each other, then
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they could get together in the same room and Alice could give her public

key to Bob directly, perhaps on a business card. If Bob is an organi-

zation, Alice the individual could present conventional identification,

perhaps involving a photograph or fingerprints. If Alice and Bob are com-

puters owned by the same company, then a system administrator could

configure Bob with Alice’s public key.

Establishing keys out of band doesn’t sound like it would scale well,

but it suffices to bootstrap a PKI. Bob’s knowledge that Alice’s key is x

can be widely, scalably disseminated using a combination of digital signa-

tures and a concept of trust. For example, suppose that you have received

Bob’s public key out of band and that you know enough about Bob to

trust him on matters of keys and identities. Then Bob could send you a

message asserting that Alice’s key is x and—since you already know Bob’s

public key—you could authenticate the message as having come from

Bob. (Remember that to digitally sign the statement Bob would append

a cryptographic hash of it that has been encrypted using his private key.)

Since you trust Bob to tell the truth, you would now know that Alice’s key

is x, even though you had never met her or exchanged a single message

with her. Using digital signatures, Bob wouldn’t even have to send you a

message; he could simply create and publish a digitally signed statement

that Alice’s key is x. Such a digitally signed statement of a public key bind-

ing is called a public key certificate, or simply a certificate. Bob could send

Alice a copy of the certificate, or post it on a website. If and when some-

one needs to verify Alice’s public key, they could do so by getting a copy of

the certificate, perhaps directly from Alice—as long as they trust Bob and

know his public key. You can see how starting from a very small number of

keys (in this case, just Bob’s) you could build up a large set of trusted keys

over time. Bob in this case is playing the role often referred to as a certifi-

cation authority (CA), and much of today’s Internet security depends on

CAs. VeriSign® is one well-known commercial CA. We return to this topic

below.

One of the major standards for certificates is known as X.509. This

standard leaves a lot of details open, but specifies a basic structure. A

certificate clearly must include:

n The identity of the entity being certified

n The public key of the entity being certified

n The identity of the signer
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n The digital signature

n A digital signature algorithm identifier (which cryptographic hash

and which cipher)

An optional component is an expiration time for the certificate. We will

see a particular use of this feature below.

Since a certificate creates a binding between an identity and a pub-

lic key, we should look more closely at what we mean by “identity.” For

example, a certificate that says, “This public key belongs to John Smith,”

may not be terribly useful if you can’t tell which of the thousands of

John Smiths is being identified. Thus, certificates must use a well-defined

name space for the identities being certified; for example, certificates are

often issued for email addresses and DNS domains.

There are different ways a PKI could formalize the notion of trust. We

discuss the two main approaches.

Certification Authorities

In this model of trust, trust is binary; you either trust someone completely

or not at all. Together with certificates, this allows the building of chains

of trust. If X certifies that a certain public key belongs to Y, and then Y

goes on to certify that another public key belongs to Z, then there exists

a chain of certificates from X to Z, even though X and Z may have never

met. If you know X’s key—and you trust X and Y —then you can believe

the certificate that gives Z’s key. In other words, all you need is a chain of

certificates, all signed by entities you trust, as long as it leads back to an

entity whose key you already know.

A certification authority or certificate authority (CA) is an entity

claimed (by someone) to be trustworthy for verifying identities and issu-

ing public key certificates. There are commercial CAs, governmental CAs,

and even free CAs. To use a CA, you must know its own key. You can learn

that CA’s key, however, if you can obtain a chain of CA-signed certificates

that starts with a CA whose key you already know. Then you can believe

any certificate signed by that new CA.

A common way to build such chains is to arrange them in a tree-

structured hierarchy, as shown in Figure 8.6. If everyone has the public

key of the root CA, then any participant can provide a chain of certificates

to another participant and know that it will be sufficient to build a chain

of trust for that participant.
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           Registration Authority (root)  

PCAn = Policy certification authority 

CA = Certification authority  

n FIGURE 8.6 Tree-structured certification authority hierarchy.

There are some significant issues with building chains of trust. Most

importantly, even if you are certain that you have the public key of the

root CA, you need to be sure that every CA from the root on down is

doing its job properly. If just one CA in the chain is willing to issue cer-

tificates to entities without verifying their identities, then what looks like

a valid chain of certificates becomes meaningless. For example, a root

CA might issue a certificate to a second-tier CA and thoroughly verify

that the name on the certificate matches the business name of the CA,

but that second-tier CA might be willing to sell certificates to anyone

who asks, without verifying their identity. This problem gets worse the

longer the chain of trust. X.509 certificates provide the option of restrict-

ing the set of entities that the subject of a certificate is, in turn, trusted to

certify.

There can be more than one root to a certification tree, and this is

common in securing Web transactions today, for example. Web browsers

such as Firefox and Internet Explorer come pre-equipped with certifi-

cates for a set of CAs; in effect, the browser’s producer has decided these

CAs and their keys can be trusted. A user can also add CAs to those that

their browser recognizes as trusted. These certificates are accepted by

Secure Socket Layer (SSL)/Transport Layer Security (TLS), the protocol

most often used to secure Web transactions, which we discuss below in

Section 8.4.3. (If you are curious, you can poke around in the preferences

settings for your browser and find the “view certificates” option to see

how many CAs your browser is configured to trust.)
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Web of Trust

An alternative model of trust is the web of trust exemplified by Pretty Good

Privacy (PGP), which is further discussed in Section 8.4.3. PGP is a security

system for email, so email addresses are the identities to which keys are

bound and by which certificates are signed. In keeping with PGP’s roots as

protection against government intrusion, there are no CAs. Instead, every

individual decides whom they trust and how much they trust them—in

this model, trust is a matter of degree. In addition, a public key certificate

can include a confidence level indicating how confident the signer is of

the key binding claimed in the certificate, so a given user may have to have

several certificates attesting to the same key binding before he is willing

to trust it.

For example, suppose you have a certificate for Bob provided by Alice;

you can assign a moderate level of trust to that certificate. However, if you

have additional certificates for Bob that were provided by C and D, each

of whom is also moderately trustworthy, that might considerably increase

your level of confidence that the public key you have for Bob is valid. In

short, PGP recognizes that the problem of establishing trust is quite a per-

sonal matter and gives users the raw material to make their own decisions,

rather than assuming that they are all willing to trust in a single hierar-

chical structure of CAs. To quote Phil Zimmerman, the developer of PGP,

“PGP is for people who prefer to pack their own parachutes.”

PGP has become quite popular in the networking community, and

PGP key-signing parties are a regular feature of IETF meetings. At these

gatherings, an individual can

n Collect public keys from others whose identity he knows.

n Provide his public key to others.

n Get his public key signed by others, thus collecting certificates that

will be persuasive to an increasingly large set of people.

n Sign the public key of other individuals, thus helping them build up

their set of certificates that they can use to distribute their public

keys.

n Collect certificates from other individuals whom he trusts enough

to sign keys.

Thus, over time, a user will collect a set of certificates with varying degrees

of trust.
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Certificate Revocation

One issue that arises with certificates is how to revoke, or undo, a cer-

tificate. Why is this important? Suppose that you suspect that someone

has discovered your private key. There may be any number of certificates

in the universe that assert that you are the owner of the public key cor-

responding to that private key. The person who discovered your private

key thus has everything he needs to impersonate you: valid certificates

and your private key. To solve this problem, it would be nice to be able

to revoke the certificates that bind your old, compromised key to your

identity, so that the impersonator will no longer be able to persuade other

people that he is you.

The basic solution to the problem is simple enough. Each CA can issue

a certificate revocation list (CRL), which is a digitally signed list of certifi-

cates that have been revoked. The CRL is periodically updated and made

publicly available. Because it is digitally signed, it can just be posted on

a website. Now, when Alice receives a certificate for Bob that she wants

to verify, she will first consult the latest CRL issued by the CA. As long as

the certificate has not been revoked, it is valid. Note that, if all certificates

have unlimited life spans, the CRL would always be getting longer, since

you could never take a certificate off the CRL for fear that some copy of the

revoked certificate might be used. For this reason, it is common to attach

an expiration date to a certificate when it is issued. Thus, we can limit the

length of time that a revoked certificate needs to stay on a CRL. As soon

as its original expiration date is passed, it can be removed from the CRL.

8.2.2 Predistribution of Symmetric Keys

If Alice wants to use a secret-key cipher to communicate with Bob, she

can’t just pick a key and send it to to him because, without already

having a key, they can’t encrypt this key to keep it confidential and they

can’t authenticate each other. As with public keys, some predistribution

scheme is needed. Predistribution is harder for symmetric keys than for

public keys for two obvious reasons:

n While only one public key per entity is sufficient for authentication

and confidentiality, there must be a symmetric key for each pair of

entities who wish to communicate. If there are N entities, that

means N(N − 1)/2 keys.

n Unlike public keys, secret keys must be kept secret.
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In summary, there are a lot more keys to distribute, and you can’t use

certificates that everyone can read.

The most common solution is to use a Key Distribution Center (KDC).

A KDC is a trusted entity that shares a secret key with each other entity.

This brings the number of keys down to a more manageable N − 1, few

enough to establish out of band for some applications. When Alice wishes

to communicate with Bob, that communication does not travel via the

KDC. Rather, the KDC participates in a protocol that authenticates Alice

and Bob—using the keys that the KDC already shares with each of them—

and generates a new session key for them to use. Then Alice and Bob

communicate directly using their session key. Kerberos (Section 8.3.3) is

a widely used system based on this approach.

8.3 AUTHENTICATION PROTOCOLS

We described how to encrypt messages and build authenticators in

Section 8.1 and how to predistribute the necessary keys in Section 8.2.

It might seem as if all we have to do to make a protocol secure is append

an authenticator to every message and, if we want confidentiality, encrypt

the message.

There are two main reasons why it’s not that simple. First, there is the

problem of a replay attack: an adversary retransmitting a copy of a mes-

sage that was previously sent. If the message was an order you had placed

on a website, for example, then the replayed message would appear to

the website as though you had ordered more of the same. Even though it

wasn’t the original incarnation of the message, its authenticator would

still be valid; after all, the message was created by you, and it wasn’t

modified. In a variation of this attack called a suppress-replay attack, an

adversary might merely delay your message (by intercepting and later

replaying it), so that it is received at a time when it is no longer appropri-

ate. For example, an adversary could delay your order to buy stock from

an auspicious time to a time when you would not have wanted to buy.

Although this message would in a sense be the original, it wouldn’t be

timely. Originality and timeliness may be considered aspects of integrity.

Ensuring them will in most cases require a nontrivial, back-and-forth

protocol.

The other problem we have not yet solved is how to establish a session

key. A session key is a symmetric-key cipher key generated on the fly and



PETERSON-AND-DAVIE 14-ch08-632-695-9780123850591 2011/11/1 22:24 Page 655 #24

8.3 Authentication protocols 655

used for just one session as described in Section 8.2. This too involves a

nontrivial protocol.

What these two issues have in common is authentication. If a mes-

sage is not original and timely, then from a practical standpoint we want

to consider it as not being authentic, not being from whom it claims to

be. And, obviously, when you are arranging to share a new session key

with someone, you want to know you are sharing it with the right per-

son. Usually, authentication protocols establish a session key at the same

time, so that at the end of the protocol Alice and Bob have authenticated

each other and they have a new symmetric key to use. Without a new

session key, the protocol would just authenticate Alice and Bob at one

point in time; a session key allows them to efficiently authenticate subse-

quent messages. Generally, session key establishment protocols perform

authentication (a notable exception is Diffie–Hellman; see Section 8.3.4),

so the terms authentication protocol and session key establishment proto-

col are almost synonymous.

There is a core set of techniques used to ensure originality and time-

liness in authentication protocols. We describe those techniques before

moving on to particular protocols.

8.3.1 Originality and Timeliness Techniques

We have seen that authenticators alone do not enable us to detect

messages that are not original or timely. One approach is to include

a timestamp in the message. Obviously the timestamp itself must be

tamperproof, so it must be covered by the authenticator. The primary

drawback to timestamps is that they require distributed clock synchro-

nization. Since our system would then depend on synchronization, the

clock synchronization itself would need to be defended against secu-

rity threats, in addition to the usual challenges of clock synchronization.

Another issue is that distributed clocks are synchronized to only a certain

degree—a certain margin of error. Thus, the timing integrity provided by

timestamps is only as good as the degree of synchronization.

Another approach is to include a nonce—a random number used only

once—in the message. Participants can then detect replay attacks by

checking whether a nonce has been used previously. Unfortunately, this

requires keeping track of past nonces, of which a great many could accu-

mulate. One solution is to combine the use of timestamps and nonces, so

that nonces are required to be unique only within a certain span of time.
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n FIGURE 8.7 A challenge-response protocol.

That makes ensuring uniqueness of nonces manageable while requiring

only loose synchronization of clocks.

Another solution to the shortcomings of timestamps and nonces is to

use one or both of them in a challenge–response protocol. Suppose we use

a timestamp. In a challenge–response protocol, Alice sends Bob a time-

stamp, challenging Bob to encrypt it in a response message (if they share a

symmetric key) or digitally sign it in a response message (if Bob has a pub-

lic key, as in Figure 8.7). The encrypted timestamp is like an authenticator

that additionally proves timeliness. Alice can easily check the timeliness

of the timestamp in a response from Bob since that timestamp comes

from Alice’s own clock—no distributed clock synchronization needed.

Suppose instead that the protocol uses nonces. Then Alice need only

keep track of those nonces for which responses are currently outstand-

ing and haven’t been outstanding too long; any purported response with

an unrecognized nonce must be bogus.

The beauty of challenge–response, which might otherwise seem exces-

sively complex, is that it combines timeliness and authentication; after all,

only Bob (and possibly Alice, if it’s a symmetric-key cipher) knows the key

necessary to encrypt the never before seen timestamp or nonce. Time-

stamps or nonces are used in most of the authentication protocols that

follow.

8.3.2 Public-Key Authentication Protocols

In the following discussion, we assume that Alice and Bob’s public keys

have been predistributed to each other via some means such as a PKI
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n FIGURE 8.8 A public-key authentication protocol that depends on synchronization.

(Section 8.2.1). We mean this to include the case where Alice includes her

certificate in her first message to Bob, and the case where Bob searches

for a certificate about Alice when he receives her first message.

This first protocol (Figure 8.8) relies on Alice and Bob’s clocks being

synchronized. Alice sends Bob a message with a timestamp and her iden-

tity in plaintext plus her digital signature. Bob uses the digital signature

to authenticate the message and the timestamp to verify its freshness.

Bob sends back a message with a timestamp and his identity in plain-

text, as well as a new session key encrypted (for confidentiality) using

Alice’s public key, all digitally signed. Alice can verify the authenticity and

freshness of the message, so she knows she can trust the new session key.

To deal with imperfect clock synchronization, the timestamps could be

augmented with nonces.

The second protocol (Figure 8.9) is similar but does not rely on clock

synchronization. In this protocol, Alice again sends Bob a digitally signed

message with a timestamp and her identity. Because their clocks aren’t

synchronized, Bob cannot be sure that the message is fresh. Bob sends

back a digitally signed message with Alice’s original timestamp, his own

new timestamp, and his identity. Alice can verify the freshness of Bob’s

reply by comparing her current time against the timestamp that origi-

nated with her. She then sends Bob a digitally signed message with his
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timestamp against her own clock, and likewise for Bob.

original timestamp and a new session key encrypted using Bob’s public

key. Bob can verify the freshness of the message because the timestamp

came from his clock, so he knows he can trust the new session key.

The timestamps essentially serve as convenient nonces, and indeed this

protocol could use nonces instead.

8.3.3 Symmetric-Key Authentication Protocols

As explained in Section 8.2.2, only in fairly small systems is it practical to

predistribute symmetric keys to every pair of entities. We focus here on

larger systems, where each entity would have its own master key shared

only with a Key Distribution Center (KDC). In this case, symmetric-key-

based authentication protocols involve three parties: Alice, Bob, and a

KDC. The end product of the authentication protocol is a session key

shared between Alice and Bob that they will use to communicate directly,

without involving the KDC.

The Needham–Schroeder authentication protocol is illustrated in

Figure 8.10. Note that the KDC doesn’t actually authenticate Alice’s ini-

tial message and doesn’t communicate with Bob at all. Instead, the KDC
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uses its knowledge of Alice’s and Bob’s master keys to construct a reply

that would be useless to anyone other than Alice (because only Alice can

decrypt it) and contains the necessary ingredients for Alice and Bob to

perform the rest of the authentication protocol themselves.

The nonce in the first two messages is to assure Alice that the KDC’s

reply is fresh. The second and third messages include the new session key

and Alice’s identifier, encrypted together using Bob’s master key. It is a

sort of symmetric-key version of a public-key certificate; it is in effect a

signed statement by the KDC (because the KDC is the only entity besides

Bob who knows Bob’s master key) that the enclosed session key is owned

by Alice and Bob. Although the nonce in the last two messages is intended
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to assure Bob that the third message was fresh, there is a flaw in this

reasoning—see Exercise 4.

Kerberos

Kerberos is an authentication system based on the Needham–Schroeder

protocol and specialized for client/server environments. Originally devel-

oped at MIT, it has been standardized by the IETF and is available as both

open source and commercial products. We will focus here on some of

Kerberos’s interesting innovations.

Kerberos clients are generally human users, and users authenticate

themselves using passwords. Alice’s master key, shared with the KDC, is

derived from her password—if you know the password, you can com-

pute the key. Kerberos assumes anyone can physically access any client

machine; therefore, it is important to minimize the exposure of Alice’s

password or master key not just in the network but also on any machine

where she logs in. Kerberos takes advantage of Needham–Schroeder to

accomplish this. In Needham-Schroeder, the only time Alice needs to use

her password is when decrypting the reply from the KDC. Kerberos client-

side software waits until the KDC’s reply arrives, prompts Alice to enter

her password, computes the master key and decrypts the KDC’s reply, and

then erases all information about the password and master key to mini-

mize its exposure. Also note that the only sign a user sees of Kerberos is

when the user is prompted for a password.

In Needham–Schroeder, the KDC’s reply to Alice plays two roles: It

gives her the means to prove her identity (only Alice can decrypt the

reply), and it gives her a sort of symmetric-key certificate or “ticket” to

present to Bob—the session key and Alice’s identifier, encrypted with

Bob’s master key. In Kerberos, those two functions—and the KDC itself,

in effect—are split up (Figure 8.11). A trusted server called an Authentica-

tion Server (AS) plays the first KDC role of providing Alice with something

she can use to prove her identity—not to Bob this time, but to a second

trusted server called a Ticket Granting Server (TGS). The TGS plays the

second KDC role, replying to Alice with a ticket she can present to Bob.

The attraction of this scheme is that if Alice needs to communicate with

several servers, not just Bob, then she can get tickets for each of them from

the TGS without going back to the AS.

In the client/server application domain for which Kerberos is intended,

it is reasonable to assume a degree of clock synchronization. This
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n FIGURE 8.11 Kerberos authentication.

allows Kerberos to use timestamps and lifespans instead of Needham–

Shroeder’s nonces, and thereby eliminate the Needham-Schroeder secu-

rity weakness explored in Exercise 4. Kerberos supports a choice of
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cryptographic algorithms including the hashes SHA-1 and MD5 and the

symmetric-key ciphers AES, 3DES, and DES.

8.3.4 Diffie–Hellman Key Agreement

The Diffie–Hellman key agreement protocol establishes a session key

without using any predistributed keys. The messages exchanged between

Alice and Bob can be read by anyone able to eavesdrop, and yet the

eavesdropper won’t know the session key that Alice and Bob end up

with. On the other hand, Diffie–Hellman doesn’t authenticate the partici-

pants. Since it is rarely useful to communicate securely without being sure

whom you’re communicating with, Diffie–Hellman is usually augmented

in some way to provide authentication. One of the main uses of Diffie–

Hellman is in the Internet Key Exchange (IKE) protocol, a central part of

the IP Security (IPsec) architecture.

The Diffie–Hellman protocol has two parameters, p and g, both of

which are public and may be used by all the users in a particular system.

Parameter p must be a prime number. The integers modp (short for mod-

ulo p) are 0 through p− 1, since x mod p is the remainder after x is divided

by p, and form what mathematicians call a group under multiplication.

Parameter g (usually called a generator) must be a primitive root of p: For

every number n from 1 through p− 1 there must be some value k such

that n = gk mod p. For example, if p were the prime number 5 (a real sys-

tem would use a much larger number), then we might choose 2 to be the

generator g since:

1 = 20 mod p

2 = 21 mod p

3 = 23 mod p

4 = 22 mod p

Suppose Alice and Bob want to agree on a shared symmetric key. Alice

and Bob, and everyone else, already know the values of p and g. Alice

generates a random private value a and Bob generates a random private

value b. Both a and b are drawn from the set of integers {1, . . . ,p− 1}. Alice

and Bob derive their corresponding public values—the values they will

send to each other unencrypted—as follows. Alice’s public value is

ga mod p
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and Bob’s public value is

gb mod p

They then exchange their public values. Finally, Alice computes

gab mod p = (gb mod p)a mod p

and Bob computes

gba mod p = (ga mod p)b mod p.

Alice and Bob now have gab mod p (which is equal to gba mod p) as their

shared symmetric key.

Any eavesdropper would know p,g, and the two public values ga mod p

and gb mod p. If only the eavesdropper could determine a or b, she could

easily compute the resulting key. Determining a or b from that informa-

tion is, however, computationally infeasible for suitably large p,a, and b; it

is known as the discrete logarithm problem.

On the other hand, there is the problem of Diffie–Hellman’s lack of

authentication. One attack that can take advantage of this is the man-

in-the-middle attack. Suppose Mallory is an adversary with the ability to

intercept messages. Mallory already knows p and g since they are public,

and she generates random private values c and d to use with Alice and

Bob, respectively. When Alice and Bob send their public values to each

other, Mallory intercepts them and sends her own public values, as in

Figure 8.12. The result is that Alice and Bob each end up unknowingly

sharing a key with Mallory instead of each other.

Alice BobMallory

ga mod p

g
c mod p

g
b mod p

gd mod p

n FIGURE 8.12 A man-in-the-middle attack.
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A variant of Diffie–Hellman sometimes called fixed Diffie–Hellman

supports authentication of one or both participants. It relies on certifi-

cates that are similar to public key certificates but instead certify the

Diffie–Hellman public parameters of an entity. For example, such a cer-

tificate would state that Alice’s Diffie–Hellman parameters are p,g, and

ga mod p (note that the value of a would still be known only to Alice).

Such a certificate would assure Bob that the other participant in Diffie–

Hellman is Alice—or else the other participant won’t be able to compute

the secret key, because she won’t know a. If both participants have cer-

tificates for their Diffie–Hellman parameters, they can authenticate each

other. If just one has a certificate, then just that one can be authenticated.

This is useful in some situations; for example, when one participant is a

web server and the other is an arbitrary client, the client can authenti-

cate the web server and establish a session key for confidentiality before

sending a credit card number to the web server.

8.4 EXAMPLE SYSTEMS

At this point, we have seen many of the components that are required to

provide one or two aspects of security. These components include crypto-

graphic algorithms, key predistribution mechanisms, and authentication

protocols. In this section, we examine some complete systems that use

these components.

These systems can be roughly categorized by the protocol layer at

which they operate. Systems that operate at the application layer include

Pretty Good Privacy (PGP), which provides electronic mail security, and

Secure Shell (SSH), a secure remote login facility. At the transport layer,

there is the IETF’s Transport Layer Security (TLS) standard and the older

protocol from which it derives, Secure Socket Layer (SSL). The IPsec (IP

Security) protocols, as their name implies, operate at the IP (network)

layer. 802.11i provides security at the link layer of wireless networks. This

section describes the salient features of each of these approaches.

You might reasonably wonder why security has to be provided at so

many different layers. One reason is that different threats require differ-

ent defensive measures, and this often translates into securing a different

protocol layer. For example, if your main concern is with a person in the

building next door snooping on your traffic as it flows between your lap-

top and your 802.11 access point, then you probably want security at the
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link layer. However, if you want to be really sure you are connected to

your bank’s website and preventing all the data that you send to the bank

from being read by curious employees of some Internet service provider,

then something that extends all the way from your machine to the bank’s

server—like the transport layer—may be the right place to secure the

traffic. As is often the case, there is no one-size-fits-all solution.

The security systems described below have the ability to vary which

cryptographic algorithms they use. The idea of making a security system

algorithm independent is a very good one, because you never know when

your favorite cryptographic algorithm might be proved to be insufficiently

strong for your purposes. It would be nice if you could quickly change to

a new algorithm without having to change the protocol specification or

implementation. Note the analogy to being able to change keys without

changing the algorithm; if one of your cryptographic algorithms turns out

to be flawed, it would be great if your entire security architecture didn’t

need an immediate redesign.

8.4.1 Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) is a widely used approach to providing secu-

rity for electronic mail. It provides authentication, confidentiality, data

integrity, and nonrepudiation. Originally devised by Phil Zimmerman,

it has evolved into an IETF standard known as OpenPGP. As we saw in

Section 8.2, PGP is notable for using a “web of trust” model for distribu-

tion of keys rather than a tree-like hierarchy.

PGP’s confidentiality and receiver authentication depend on the

receiver of an email message having a public key that is known to the

sender. To provide sender authentication and nonrepudiation, the sender

must have a public key that is known by the receiver. These public keys

are predistributed using certificates and a web-of-trust PKI as described

in Section 8.2.1. PGP supports RSA and DSS for public key certificates.

These certificates may additionally specify which cryptographic algo-

rithms are supported or preferred by the key’s owner. The certificates

provide bindings between email addresses and public keys.

Consider the following example of PGP being used to provide both

sender authentication and confidentiality. Suppose Alice has a message

to email to Bob. Alice’s PGP application goes through the steps illus-

trated in Figure 8.13. First, the message is digitally signed by Alice; MD5,

SHA-1, and the SHA-2 family are among the hashes that may be used in



PETERSON-AND-DAVIE 14-ch08-632-695-9780123850591 2011/11/1 22:24 Page 666 #35

666 CHAPTER 8 Network security
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Hi…

A
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 generated one-time session key 

Hi…

A

A-B

3) Encrypt the session key using
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Hi…
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A -B

B
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 obtain an ASCII-compatible

 representation  

A

A-B

n FIGURE 8.13 PGP’s steps to prepare a message for emailing from Alice to Bob.

the digital signature. Her PGP application then generates a new session

key for just this one message; AES and 3DES are among the supported

symmetric-key ciphers. The digitally signed message is encrypted using

the session key, then the session key itself is encrypted using Bob’s public

key and appended to the message. Alice’s PGP application reminds her of

the level of trust she had previously assigned to Bob’s public key, based

on the number of certificates she has for Bob and the trustworthiness of

the individuals who signed the certificates. Finally, not for security but

because email messages have to be sent in ASCII, a base64 encoding (as

described in Section 9.1.1) is applied to the message to convert it to an

ASCII-compatible representation. Upon receiving the PGP message in an
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email, Bob’s PGP application reverses this process step-by-step to obtain

the original plaintext message and confirm Alice’s digital signature—and

reminds Bob of the level of trust he has in Alice’s public key.

Email has particular characteristics that allow PGP to embed an

adequate authentication protocol in this one-message data transmis-

sion protocol, avoiding the need for any prior message exchange (and

sidestepping some of the complexities described earlier in Section 8.3).

Alice’s digital signature suffices to authenticate her. Although there is no

proof that the message is timely, legitimate email isn’t guaranteed to be

timely either. There is also no proof that the message is original, but Bob is

an email user and probably a fault-tolerant human who can recover from

duplicate emails (which, again, are not out of the question under normal

operation anyway). Alice can be sure that only Bob could read the mes-

sage because the session key was encrypted with his public key. Although

this protocol doesn’t prove to Alice that Bob is actually there and received

the email, an authenticated email from Bob back to Alice could do

this.

The preceding discussion gives a good example of why application-

layer security mechanisms can be helpful. Only with a full knowledge of

how the application works can you make the right choices about which

attacks to defend against (like forged email) versus which to ignore (like

delayed or replayed email).

8.4.2 Secure Shell (SSH)

The Secure Shell (SSH) protocol is used to provide a remote login service LAB 13:
VPNand is intended to replace the less secure Telnet and rlogin programs used

in the early days of the Internet. (SSH can also be used to remotely execute

commands and transfer files, like the Unix rsh and rcp commands, respec-

tively, but we will focus first on how SSH supports remote login.) SSH is

most often used to provide strong client/server authentication/message

integrity—where the SSH client runs on the user’s desktop machine and

the SSH server runs on some remote machine that the user wants to log

into—but it also supports confidentiality. Telnet and rlogin provide none

of these capabilities. Note that “SSH” is often used to refer to both the SSH

protocol and applications that use it; you need to figure out which from

the context.

To better appreciate the importance of SSH on today’s Internet, con-

sider a couple of the scenarios where it is used. Telecommuters, for
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example, often subscribe to ISPs that offer high-speed cable modem or

DSL service, and they use these ISPs, and some chain of other ISPs as

well, to reach machines operated by their employer. This means that

when a telecommuter logs into a machine inside his employer’s data

center, both the passwords and all the data sent or received potentially

passes through any number of untrusted networks. SSH provides a way to

encrypt the data sent over these connections and to improve the strength

of the authentication mechanism used to log in. A similar usage of SSH

is remote login to a router, perhaps to change its configuration or read

its log files; clearly, a network administrator wants to be sure that he can

log into a router securely and that unauthorized parties can neither log in

nor intercept the commands sent to the router or output sent back to the

administrator.

The latest version of SSH, version 2, consists of three protocols:

n SSH-TRANS, a transport layer protocol

n SSH-AUTH, an authentication protocol

n SSH-CONN, a connection protocol

We focus on the first two, which are involved in remote login. We briefly

discuss the purpose of SSH-CONN at the end of the section.

SSH-TRANS provides an encrypted channel between the client and

server machines. It runs on top of a TCP connection. Any time a user uses

an SSH application to log into a remote machine, the first step is to set up

an SSH-TRANS channel between those two machines. The two machines

establish this secure channel by first having the client authenticate the

server using RSA. Once authenticated, the client and server establish a

session key that they will use to encrypt any data sent over the channel.

This high-level description skims over several details, including the fact

that the SSH-TRANS protocol includes a negotiation of the encryption

algorithm the two sides are going to use. For example, AES is commonly

selected. Also, SSH-TRANS includes a message integrity check of all data

exchanged over the channel.

The one issue we can’t skim over is how the client came to possess the

server’s public key that it needs to authenticate the server. Strange as it

may sound, the server tells the client its public key at connection time.

The first time a client connects to a particular server, the SSH application

warns the user that it has never talked to this machine before and asks

if the user wants to continue. Although it is a risky thing to do, because
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SSH is effectively not able to authenticate the server, users often say “yes”

to this question. The SSH application then remembers the server’s public

key, and the next time the user connects to that same machine it com-

pares this saved key with the one the server responds with. If they are the

same, SSH authenticates the server. If they are different, however, the SSH

application again warns the user that something is amiss, and the user

is then given an opportunity to abort the connection. Alternatively, the

prudent user can learn the server’s public key through some out-of-band

mechanism, save it on the client machine, and thus never take the “first

time” risk.

Once the SSH-TRANS channel exists, the next step is for the user to

actually log into the machine, or more specifically, authenticate himself or

herself to the server. SSH allows three different mechanisms for doing this.

First, since the two machines are communicating over a secure channel, it

is OK for the user to simply send his or her password to the server. This is

not a safe thing to do when using Telnet since the password would be sent

in the clear, but in the case of SSH the password is encrypted in the SSH-

TRANS channel. The second mechanism uses public-key encryption. This

requires that the user has already placed his or her public key on the

server. The third mechanism, called host-based authentication, basically

says that any user claiming to be so-and-so from a certain set of trusted

hosts is automatically believed to be that same user on the server. Host-

based authentication requires that the client host authenticate itself to the

server when they first connect; standard SSH-TRANS only authenticates

the server by default.

The main thing you should take away from this discussion is that SSH

is a fairly straightforward application of the protocols and algorithms we

have seen throughout this chapter. However, what sometimes makes SSH

a challenge to understand is all the keys a user has to create and manage,

where the exact interface is operating system dependent. For example,

the OpenSSH package that runs on most Unix machines supports a ssh-

keygen command that can be used to create public/private key pairs.

These keys are then stored in various files in directory .ssh in the user’s

home directory. For example, file /.ssh/known hosts records the keys for

all the hosts the user has logged into, file /.ssh/authorized keys contains

the public keys needed to authenticate the user when he or she logs into

this machine (i.e., they are used on the server side), and file /.ssh/identity

contains the private keys needed to authenticate the user on remote

machines (i.e., they are used on the client side).
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n FIGURE 8.14 Using SSH port forwarding to secure other TCP-based applications.

Finally, SSH has proven so useful as a system for securing remote login,

it has been extended to also support other applications, such as sending

and receiving email. The idea is to run these applications over a secure

“SSH tunnel.” This capability is called port forwarding, and it uses the

SSH-CONN protocol. The idea is illustrated in Figure 8.14, where we see a

client on host A indirectly communicating with a server on host B by for-

warding its traffic through an SSH connection. The mechanism is called

port forwarding because when messages arrive at the well-known SSH

port on the server, SSH first decrypts the contents and then “forwards”

the data to the actual port at which the server is listening. This is just

another sort of tunnel of the sort introduced in Section 3.2.9, which in this

case happens to provide confidentiality and authentication. It’s possible

to provide a form of virtual private network (VPN) using SSH tunnels in

this way.

8.4.3 Transport Layer Security (TLS, SSL, HTTPS)

To understand the design goals and requirements for the Transport Layer

Security (TLS) standard and the Secure Socket Layer (SSL) on which TLS

is based, it is helpful to consider one of the main problems that they are

intended to solve. As the World Wide Web became popular and commer-

cial enterprises began to take an interest in it, it became clear that some

level of security would be necessary for transactions on the Web. The

canonical example of this is making purchases by credit card. There are

several issues of concern when sending your credit card information to a

computer on the Web. First, you might worry that the information would

be intercepted in transit and subsequently used to make unauthorized
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purchases. You might also worry about the details of a transaction being

modified, such as changing the purchase amount. And you would cer-

tainly like to know that the computer to which you are sending your credit

card information is in fact one belonging to the vendor in question and

not some other party. Thus, we immediately see a need for confidential-

ity, integrity, and authentication in Web transactions. The first widely used

solution to this problem was SSL, originally developed by Netscape and

subsequently the basis for the IETF’s TLS standard.

The designers of SSL and TLS recognized that these problems were not

specific to Web transactions (i.e., those using HTTP) and instead built a

general-purpose protocol that sits between an application protocol such

as HTTP and a transport protocol such as TCP. The reason for calling

this “transport layer security” is that, from the application’s perspective,

this protocol layer looks just like a normal transport protocol except for

the fact that it is secure. That is, the sender can open connections and

deliver bytes for transmission, and the secure transport layer will get them

to the receiver with the necessary confidentiality, integrity, and authen-

tication. By running the secure transport layer on top of TCP, all of the

normal features of TCP (reliability, flow control, congestion control, etc.)

are also provided to the application. This arrangement of protocol layers

is depicted in Figure 8.15.

When HTTP is used in this way, it is known as HTTPS (Secure HTTP).

In fact, HTTP itself is unchanged. It simply delivers data to and accepts

data from the SSL/TLS layer rather than TCP. For convenience, a default

TCP port has been assigned to HTTPS (443). That is, if you try to con-

nect to a server on TCP port 443, you will likely find yourself talking to the

SSL/TLS protocol, which will pass your data through to HTTP provided

all goes well with authentication and decryption. Although standalone

implementations of SSL/TLS are available, it is more common for an

Application (e.g., HTTP)

Secure transport layer

TCP

IP

Subnet

n FIGURE 8.15 Secure transport layer inserted between application and TCP layers.
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implementation to be bundled with applications that need it, primarily

web browsers.

In the remainder of our discussion of transport layer security, we focus

on TLS. Although SSL and TLS are unfortunately not interoperable, they

differ in only minor ways, so nearly all of this description of TLS applies

to SSL.

The Handshake Protocol

A pair of TLS participants negotiate at runtime which cryptography to

use. The participants negotiate a choice of:

n Data integrity hash (MD5, SHA-1, etc.), used to implement HMACs

n Symmetric-key cipher for confidentiality (among the possibilities

are DES, 3DES, and AES)

n Session key establishment approach (among the possibilities are

Diffie–Hellman, fixed Diffie–Hellman, and public-key

authentication protocols using RSA or DSS)

Interestingly, the participants may also negotiate the use of a compression

algorithm, not because this offers any security benefits, but because it’s

easy to do when you’re negotiating all this other stuff and you’ve already

decided to do some expensive per-byte operations on the data.

In TLS, the confidentiality cipher uses two keys, one for each direction,

and similarly two initialization vectors. The HMACs are likewise keyed

with different keys for the two participants. Thus, regardless of the choice

of cipher and hash, a TLS session requires effectively six keys. TLS derives

all of them from a single shared master secret. The master secret is a 384-

bit (48-byte) value that in turn is derived in part from the “session key”

that results from TLS’s session key establishment protocol.

The part of TLS that negotiates the choices and establishes the shared

master secret is called the handshake protocol. (Actual data transfer is

performed by TLS’s record protocol.) The handshake protocol is at heart

a session key establishment protocol, with a master secret instead of a

session key. Since TLS supports a choice of approaches to session key

establishment, these call for correspondingly different protocol variants.

Furthermore, the handshake protocol supports a choice between mutual

authentication of both participants, authentication of just one participant

(this is the most common case, such as authenticating a website but not

a user), or no authentication at all (anonymous Diffie–Hellman). Thus,
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(depend on which algorithms
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Client authentication messages

(depend on which algorithms
are chosen)

List-of-algorithm-combinations, N
C

HMAC of master secret and previous

messages as seen by Client

Chosen-algorithm-combination, NS

HMAC of master secret and previous

messages as seen by Server

n FIGURE 8.16 Handshake protocol to establish TLS session.

the handshake protocol knits together several session key establishment

protocols into a single protocol.

Figure 8.16 shows the handshake protocol at a high level. The client

initially sends a list of the combinations of cryptographic algorithms that

it supports, in decreasing order of preference. The server responds, giv-

ing the single combination of cryptographic algorithms it selected from

those listed by the client. These messages also contain a client nonce and

a server nonce, respectively, that will be incorporated in generating the

master secret later.
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At this point, the negotiation phase is complete. The server now sends

additional messages based on the negotiated session key establishment

protocol. That could involve sending a public-key certificate or a set

of Diffie–Hellman parameters. If the server requires authentication of

the client, it sends a separate message indicating that. The client then

responds with its part of the negotiated key exchange protocol.

Now the client and server each have the information necessary to gen-

erate the master secret. The “session key” that they exchanged is not in

fact a key, but instead what TLS calls a pre-master secret. The master secret

is computed (using a published algorithm) from this pre-master secret,

the client nonce, and the server nonce. Using the keys derived from the

master secret, the client then sends a message that includes a hash of all

the preceding handshake messages, to which the server responds with a

similar message. This enables them to detect any discrepancies between

the handshake messages they sent and received, such as would result, for

example, if a man in the middle modified the initial unencrypted client

message to weaken its choices of cryptographic algorithms.

The Record Protocol

Within a session established by the handshake protocol, TLS’s record

protocol adds confidentiality and integrity to the underlying transport

service. Messages handed down from the application layer are:

1. Fragmented or coalesced into blocks of a convenient size for the

following steps

2. Optionally compressed

3. Integrity-protected using an HMAC

4. Encrypted using a symmetric-key cipher

5. Passed to the transport layer (normally TCP) for transmission

The record protocol uses an HMAC as an authenticator. The HMAC

uses whichever hash algorithm (MD5, SHA-1, etc.) was negotiated by

the participants. The client and server have different keys to use when

computing HMACs, making them even harder to break. Furthermore,

each record protocol message is assigned a sequence number, which

is included when the HMAC is computed—even though the sequence

number is never explicit in the message. This implicit sequence num-

ber prevents replays or reorderings of messages. This is needed because,

although TCP can deliver sequential, unduplicated messages to the layer



PETERSON-AND-DAVIE 14-ch08-632-695-9780123850591 2011/11/1 22:24 Page 675 #44

8.4 Example systems 675

above it under normal assumptions, those assumptions do not include

an adversary that can intercept TCP messages, modify messages, or send

bogus ones. On the other hand, it is TCP’s delivery guarantees that make

it possible for TLS to rely on a legitimate TLS message having the next

implicit sequence number in order.

Another interesting feature of the TLS protocol, which is quite a use-

ful feature for Web transactions, is the ability to resume a session. To

understand the motivation for this, it is helpful to understand how HTTP

makes use of TCP connections. (The details of HTTP are presented in

Section 9.1.2.) Each HTTP operation, such as getting a page of text or

an image from a server, requires a new TCP connection to be opened.

Retrieving a single page with a number of embedded graphical objects

might take many TCP connections. Recall from Section 5.2 that opening

a TCP connection requires a three-way handshake before data trans-

mission can start. Once the TCP connection is ready to accept data,

the client would then need to start the TLS handshake protocol, tak-

ing at least another two round-trip times (and consuming some amount

of processing resources and network bandwidth) before actual applica-

tion data could be sent. The resumption capability of TLS alleviates this

problem.

Session resumption is an optimization of the handshake that can be

used in those cases where the client and the server have already estab-

lished some shared state in the past. The client simply includes the

session ID from a previously established session in its initial handshake

message. If the server finds that it still has state for that session, and the

resumption option was negotiated when that session was originally cre-

ated, then the server can reply to the client with an indication of success,

and data transmission can begin using the algorithms and parameters

previously negotiated. If the session ID does not match any session state

cached at the server, or if resumption was not allowed for the session, then

the server will fall back to the normal handshake process.

8.4.4 IP Security (IPsec)

Probably the most ambitious of all the efforts to integrate security into the

Internet happens at the IP layer. Support for IPsec, as the architecture is

called, is optional in IPv4 but mandatory in IPv6.

IPsec is really a framework (as opposed to a single protocol or system)

for providing all the security services discussed throughout this chap-

ter. IPsec provides three degrees of freedom. First, it is highly modular,
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allowing users (or more likely, system administrators) to select from a

variety of cryptographic algorithms and specialized security protocols.

Second, IPsec allows users to select from a large menu of security prop-

erties, including access control, integrity, authentication, originality, and

confidentiality. Third, IPsec can be used to protect narrow streams (e.g.,

packets belonging to a particular TCP connection being sent between a

pair of hosts) or wide streams (e.g., all packets flowing between a pair of

routers).

When viewed from a high level, IPsec consists of two parts. The first

part is a pair of protocols that implement the available security services.

They are the Authentication Header (AH), which provides access control,

connectionless message integrity, authentication, and antireplay protec-

tion, and the Encapsulating Security Payload (ESP), which supports these

same services, plus confidentiality. AH is rarely used so we focus on ESP

here. The second part is support for key management, which fits under

an umbrella protocol known as the Internet Security Association and Key

Management Protocol (ISAKMP).

The abstraction that binds these two pieces together is the security

association (SA). An SA is a simplex (one-way) connection with one or

more of the available security properties. Securing a bidirectional com-

munication between a pair of hosts—corresponding to a TCP connection,

for example—requires two SAs, one in each direction. Although IP is a

connectionless protocol, security depends on connection state informa-

tion such as keys and sequence numbers. When created, an SA is assigned

an ID number called a security parameters index (SPI) by the receiving

machine. A combination of this SPI and the destination IP addresses

uniquely identifies an SA. An ESP header includes the SPI so the receiving

host can determine which SA an incoming packet belongs to and, hence,

what algorithms and keys to apply to the packet.

SAs are established, negotiated, modified, and deleted using ISAKMP.

It defines packet formats for exchanging key generation and authentica-

tion data. These formats aren’t terribly interesting because they provide

a framework only—the exact form of the keys and authentication data

depends on the key generation technique, the cipher, and the authen-

tication mechanism that is used. Moreover, ISAKMP does not specify a

particular key exchange protocol, although it does suggest the Internet

Key Exchange (IKE) as one possibility, and IKE is what is used in practice.

ESP is the protocol used to securely transport data over an established

SA. In IPv4, the ESP header follows the IP header; in IPv6, it is an extension
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PayloadData
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n FIGURE 8.17 IPsec’s ESP format.

header. Its format uses both a header and a trailer, as shown in Figure 8.17.

The SPI field lets the receiving host identify the security association

to which the packet belongs. The SeqNum field protects against replay

attacks. The packet’s PayloadData contains the data described by the

NextHdr field. If confidentiality is selected, then the data is encrypted

using whatever cipher was associated with the SA. The PadLength field

records how much padding was added to the data; padding is sometimes

necessary because, for example, the cipher requires the plaintext to be

a multiple of a certain number of bytes or to ensure that the resulting

ciphertext terminates on a 4-byte boundary. Finally, the Authentication-

Data carries the authenticator.

IPsec supports a tunnel mode as well as the more straightforward trans-

port mode. Each SA operates in one or the other mode. In a transport

mode SA, ESP’s payload data is simply a message for a higher layer such

as UDP or TCP. In this mode, IPsec acts as an intermediate protocol layer,

much like SSL/TLS does between TCP and a higher layer. When an ESP

message is received, its payload is passed to the higher level protocol.

In a tunnel mode SA, however, ESP’s payload data is itself an IP packet,

as in Figure 8.18. The source and destination of this inner IP packet may

be different from those of the outer IP packet. When an ESP message is

received, its payload is forwarded on as a normal IP packet. The most

common way to use the ESP is to build an “IPsec tunnel” between two

routers, typically firewalls. For example, a corporation wanting to link two

sites using the Internet could open a pair of tunnel-mode SAs between

a router at one site and a router at the other site, as we discussed in

Section 3.2.9. An IP packet outgoing from one site would, at the outgoing
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IP header, dest = a.b.c.d ESP header

ESP payload

ESP trailerinner IP packet, destination = w.x.y.z

n FIGURE 8.18 An IP packet with a nested IP packet encapsulated using ESP in tunnel mode. Note that the inner and

outer packets have different addresses.

router, become the payload of an ESP message sent to the other site’s

router. The receiving router would unwrap the payload IP packet and

forward it on to its true destination.

These tunnels may also be configured to use ESP with confidentiality

and authentication, thus preventing unauthorized access to the data that

traverses this virtual link and ensuring that no spurious data is received

at the far end of the tunnel. Furthermore, tunnels can provide traffic

confidentiality, since multiplexing multiple flows through a single tunnel

obscures information about how much traffic is flowing between partic-

ular endpoints. A network of such tunnels can be used to implement an

entire virtual private network (see Section 3.2.9). Hosts communicating

over a VPN need not even be aware that it exists.

8.4.5 Wireless Security (802.11i)

Wireless links (Section 2.7) are particularly exposed to security threats due

to the lack of any physical security on the medium. While the convenience

of 802.11 has prompted widespread acceptance of the technology, lack of

security has been a recurring problem. For example, it is all too easy for an

employee of a corporation to connect an 802.11 access point to the cor-

porate network. Since radio waves pass through most walls, if the access

point lacks the correct security measures, an attacker can now gain access

to the corporate network from outside the building. Similarly, a computer

with a wireless network adaptor inside the building could connect to an

access point outside the building, potentially exposing it to attack, not to

mention the rest of the corporate network if that same computer has, say,

an Ethernet connection as well.

Consequently, there has been considerable work on securing Wi-Fi

links. Somewhat surprisingly, one of the early security techniques deve-

loped for 802.11, known as Wired Equivalent Privacy (WEP), turned out to

be seriously flawed and quite easily breakable.
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The IEEE 802.11i standard provides authentication, message integrity,

and confidentiality to 802.11 (Wi-Fi) at the link layer. WPA2 (Wi-Fi Pro-

tected Access 2) is often used as a synonym for 802.11i, although it

is technically a trademark of the Wi-Fi Alliance® that certifies product

compliance with 802.11i.

For backward compatibility, 802.11i includes definitions of first-

generation security algorithms—including WEP—that are now known to

have major security flaws. We will focus here on 802.11i’s newer, stronger

algorithms.

802.11i authentication supports two modes. In either mode, the end

result of successful authentication is a shared Pairwise Master Key. Per-

sonal mode, also known as Pre-Shared Key (PSK) mode, provides weaker

security but is more convenient and economical for situations like a home

802.11 network. The wireless device and the Access Point (AP) are precon-

figured with a shared passphrase—essentially a very long password—from

which the Pairwise Master Key is cryptographically derived.

802.11i’s stronger authentication mode is based on the IEEE 802.1X

framework for controlling access to a LAN, which uses an Authentica-

tion Server (AS) as in Figure 8.19. The AS and AP must be connected

by a secure channel and could even be implemented as a single box,

but they are logically separate. The AP forwards authentication mes-

sages between the wireless device and the AS. The protocol used for

authentication is called the Extensible Authentication Protocol (EAP). EAP

is designed to support multiple authentication methods—smart cards,

Kerberos, one-time passwords, public key authentication, and so on—

as well as both one-sided and mutual authentication. So EAP is better

thought of as an authentication framework than a protocol. Specific EAP-

compliant protocols, of which there are many, are called EAP methods. For

example, EAP-TLS is an EAP method based on TLS authentication (see

Section 8.4.3).

802.11i does not place any restrictions on what the EAP method can

use as a basis for authentication. It does, however, require an EAP method

that performs mutual authentication, because not only do we want to

prevent an adversary from accessing the network via our AP, we also want

to prevent an adversary from fooling our wireless devices with a bogus,

malicious AP. The end result of a successful authentication is a Pairwise

Master Key shared between the wireless device and the AS, which the AS

then conveys to the AP.
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n FIGURE 8.19 Use of an Authentication Server in 802.11i.

One of the main differences between the stronger AS-based mode and

the weaker personal mode is that the former readily supports a unique

key per client. This in turn makes it easier to change the set of clients that

can authenticate themselves (e.g., to revoke access to one client) without

needing to change the secret stored in every client.

With a Pairwise Master Key in hand, the wireless device and the AP exe-

cute a session key establishment protocol called the 4-way handshake to

establish a Pairwise Transient Key. This Pairwise Transient Key is really a

collection of keys that includes a session key called a Temporal Key. This

session key is used by the protocol, called CCMP, that provides 802.11i’s

data confidentiality and integrity.

CCMP stands for CTR (Counter Mode) with CBC-MAC (Cipher-Block

Chaining with Message Authentication Code) Protocol. CCMP uses AES

in counter mode to encrypt for confidentiality. Recall that in counter

mode encryption successive values of a counter are incorporated into the

encryption of successive blocks of plaintext (Section 8.1.1).

CCMP uses a Message Authentication Code (MAC) as an authenticator.

The MAC algorithm is based on CBC (Section 8.1.1), even though CCMP

doesn’t use CBC in the confidentiality encryption. In effect, CBC is per-

formed without transmitting any of the CBC-encrypted blocks, solely so

that the last CBC-encrypted block can be used as a MAC (only its first
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8 bytes are actually used). The role of initialization vector is played by a

specially constructed first block that includes a 48-bit packet number—a

sequence number. (The packet number is also incorporated in the con-

fidentiality encryption and serves to expose replay attacks.) The MAC is

subsequently encrypted along with the plaintext in order to prevent birth-

day attacks, which depend on finding different messages with the same

authenticator (Section 8.1.4).

8.5 FIREWALLS

Whereas much of this chapter has focused on the uses of cryptography to

provide such security features as authentication and confidentiality, there

is a whole set of security issues that are not readily addressed by crypto-

graphic means. For example, worms and viruses spread by exploiting bugs

in operating systems and application programs (and sometimes human

gullibility as well), and no amount of cryptography can help you if your

machine has unpatched vulnerabilities. So other approaches are often

used to keep out various forms of potentially harmful traffic. Firewalls are

one of the most common ways to do this.

A firewall is a system that typically sits at some point of connectiv-

ity between a site it protects and the rest of the network, as illustrated

in Figure 8.20. It is usually implemented as an “appliance” or part of a

router, although a “personal firewall” may be implemented on an end-

user machine. Firewall-based security depends on the firewall being the

only connectivity to the site from outside; there should be no way to

bypass the firewall via other gateways, wireless connections, or dial-up

connections. The wall metaphor is somewhat misleading in the context

of networks since a great deal of traffic passes through a firewall. One

way to think of a firewall is that by default it blocks traffic unless that

traffic is specifically allowed to pass through. For example, it might filter

out all incoming messages except those addresses to a particular set of IP

addresses or to particular TCP port numbers.

In effect, a firewall divides a network into a more-trusted zone inter-

nal to the firewall and a less-trusted zone external to the firewall.4 This is

4The location of a firewall also often happens to be the dividing line between globally

addressable regions and those that use local addresses. Hence, Network Address Trans-

device, even though they are logically separate.

lation (NAT; see Section 4.1.3) functionality and firewall functionality often are found in
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n FIGURE 8.20 A firewall filters packets flowing between a site and the rest of the Internet.

useful if you do not want external users to access a particular host or ser-

vice within your site. Much of the complexity comes from the fact that

you want to allow different kinds of access to different external users,

ranging from the general public, to business partners, to remotely located

members of your organization. A firewall may also impose restrictions

on outgoing traffic to prevent certain attacks and to limit losses if an

adversary succeeds in getting access inside the firewall.

Firewalls may be used to create multiple zones of trust, such as a hierar-

chy of increasingly trusted zones. A common arrangement involves three

zones of trust: the internal network, the DMZ (“demilitarized zone”); and

the rest of the Internet. The DMZ is used to hold services such as DNS

and email servers that need to be accessible to the outside. Both the inter-

nal network and the outside world can access the DMZ, but hosts in the

DMZ cannot access the internal network; therefore, an adversary who

succeeds in compromising a host in the exposed DMZ still cannot access

the internal network. The DMZ can be periodically restored to a clean

state.

Firewalls filter based on IP, TCP, and UDP information, among other

things. They are configured with a table of addresses that characterize the

packets they will, and will not, forward. By addresses, we mean more than

just the destination’s IP address, although that is one possibility. Gener-

ally, each entry in the table is a 4-tuple: It gives the IP address and TCP (or

UDP) port number for both the source and destination.
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For example, a firewall might be configured to filter out (not forward)

all packets that match the following description:

〈192.12.13.14, 1234, 128.7.6.5, 80 〉

This pattern says to discard all packets from port 1234 on host

192.12.13.14 addressed to port 80 on host 128.7.6.5. (Port 80 is the well-

known TCP port for HTTP.) Of course, it’s often not practical to name

every source host whose packets you want to filter, so the patterns can

include wildcards. For example,

〈 *, *, 128.7.6.5, 80 〉

says to filter out all packets addressed to port 80 on 128.7.6.5, regardless of

what source host or port sent the packet. Notice that address patterns like

these require the firewall to make forwarding/filtering decisions based on

level 4 port numbers, in addition to level 3 host addresses. It is for this

reason that network layer firewalls are sometimes called level 4 switches.

In the preceding discussion, the firewall forwards everything except

where specifically instructed to filter out certain kinds of packets. A fire-

wall could also filter out everything unless explicitly instructed to forward

it, or use a mix of the two strategies. For example, instead of blocking

access to port 80 on host 128.7.6.5, the firewall might be instructed to only

allow access to port 25 (the SMTP mail port) on a particular mail server,

such as

〈 *, *, 128.19.20.21, 25 〉

but to block all other traffic. Experience has shown that firewalls are

very frequently configured incorrectly, allowing unsafe access. Part of the

problem is that filtering rules can overlap in complex ways, making it

hard for a system administrator to correctly express the intended filtering.

A design principle that maximizes security is to configure a firewall to dis-

card all packets other than those that are explicitly allowed. Of course, this

means that some valid applications might be accidentally disabled; pre-

sumably users of those applications eventually notice and ask the system

administrator to make the appropriate change.

Many client/server applications dynamically assign a port to the client.

If a client inside a firewall initiates access to an external server, the

server’s response would be addressed to the dynamically assigned port.

This poses a problem: How can a firewall be configured to allow an arbi-

trary server’s response packet but disallow a similar packet for which
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there was no client request? This is not possible with a stateless firewall,

which evaluates each packet in isolation. It requires a stateful firewall,

which keeps track of the state of each connection. An incoming packet

addressed to a dynamically assigned port would then be allowed only if it

is a valid response in the current state of a connection on that port.

Modern firewalls also understand and filter based on many specific

application-level protocols such as HTTP, Telnet, or FTP. They use infor-

mation specific to that protocol, such as URLs in the case of HTTP, to

decide whether to discard a message.

8.5.1 Strengths andWeaknesses of Firewalls

At best, a firewall protects a network from undesired access from the

rest of the Internet; it cannot provide security to legitimate communi-

cation between the inside and the outside of the firewall. In contrast,

the cryptography-based security mechanisms described in this chapter

are capable of providing secure communication between any partici-

pants anywhere. This being the case, why are firewalls so common? One

reason is that firewalls can be deployed unilaterally, using mature com-

mercial products, while cryptography-based security requires support at

both endpoints of the communication. A more fundamental reason for

the dominance of firewalls is that they encapsulate security in a cen-

tralized place, in effect factoring security out of the rest of the network.

A system administrator can manage the firewall to provide security, free-

ing the users and applications inside the firewall from security concerns—

at least some kinds of security concerns.

Unfortunately, firewalls have serious limitations. Since a firewall does

not restrict communication between hosts that are inside the firewall, the

adversary who does manage to run code internal to a site can access all

local hosts. How might an adversary get inside the firewall? The adversary

could be a disgruntled employee with legitimate access, or the adversary’s

software could be hidden in some software installed from a CD or down-

loaded from the Web. It might be possible to bypass the firewall by using

wireless communication or dial-up connections.

Another problem is that any parties granted access through your fire-

wall, such as business partners or externally located employees, become

a security vulnerability. If their security is not as good as yours, then an

adversary could penetrate your security by penetrating their security.
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On of the most serious problems for firewalls is their vulnerability to

the exploitation of bugs in machines inside the firewall. Such bugs are

discovered regularly, so a system administrator has to constantly moni-

tor announcements of them. Administrators frequently fail to do so, since

firewall security breaches routinely exploit security flaws that have been

known for some time and have straightforward solutions.

Malware (for “malicious software”) is the term for software that is

designed to act on a computer in ways concealed from and unwanted by

the computer’s user. Viruses, worms, and spyware are common types of

malware. (Virus is sometimes used synonymously with malware, but we

will use it in the narrower sense in which it refers to only a particular kind

of malware.) Malware code need not be natively executable object code; it

could as well be interpreted code such as a script or an executable macro

such as those used by Microsoft® Word.

Viruses and worms are characterized by the ability to make and spread

copies of themselves; the difference between them is that a worm is a

complete program that replicates itself, while a virus is a bit of code

that is inserted (and inserts copies of itself) into another piece of soft-

ware or a file, so that it is executed as part of the execution of that piece

of software or as a result of opening the file. Viruses and worms typ-

ically cause problems such as consuming network bandwidth as mere

side effects of attempting to spread copies of themselves. Even worse,

they can also deliberately damage a system or undermine its security in

various ways. They could, for example, install a backdoor—software that

allows remote access to the system without the normal authentication.

This could lead to a firewall exposing a service that should be provid-

ing its own authentication procedures but has been undermined by a

backdoor.

Spyware is software that, without authorization, collects and trans-

mits private information about a computer system or its users. Usually

spyware is secretly embedded in an otherwise useful program and is

spread by users deliberately installing copies. The problem for firewalls

is that the transmission of the private information looks like legitimate

communication.

A natural question to ask is whether firewalls (or cryptographic secu-

rity) could keep malware out of a system in the first place. Most malware is

indeed transmitted via networks, although it may also be transmitted via

portable storage devices such as CDs and memory sticks. Certainly this
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is one argument in favor of the “block everything not explicitly allowed”

approach taken by many administrators in their firewall configurations.

One approach that is used to detect malware is to search for seg-

ments of code from known malware, sometimes called a signature. This

approach has its own challenges, as cleverly designed malware can tweak

its representation in various ways. There is also a potential impact on net-

work performance to perform such detailed inspection of data entering

a network. Cryptographic security cannot eliminate the problem either,

although it does provide a means to authenticate the originator of a piece

of software and detect any tampering, such as when a virus inserts a copy

of itself.

Related to firewalls are systems known as intrusion detection systems

(IDS) and intrusion prevention systems (IPS). These systems try to look

for anomalous activity, such as an unusually large amount of traffic tar-

geting a given host or port number, for example, and generate alarms for

network managers or perhaps even take direct action to limit a possible

attack. While there are commercial products in this space today, it is still

a developing field.

8.6 SUMMARY

Networks such as the Internet are shared by parties with conflicting inter-

ests, a situation that was not entirely foreseeable in the early days of

networking. The job of network security is to keep some set of users from

spying on or interfering with other users of the network. Confidential-

ity is achieved by encrypting messages. Data integrity can be assured

using cryptographic hashing. The two techniques can be combined to

guarantee authenticity of messages.

Symmetric-key ciphers such as AES and 3DES use the same secret key

for both encryption and decryption, so sender and receiver must share

the same key. Public-key ciphers such as RSA use a public key for encryp-

tion and a secret, private key for decryption. This means that any party

can use the public key to encrypt a message such that it is readable only

by the holder of the private key. The fastest technique known for break-

ing established ciphers such as AES and RSA is brute force search of the

space of possible keys, which is made computationally infeasible by the

use of large keys. Most encryption for confidentiality uses symmetric-key

ciphers due to their vastly superior speed, while public-key ciphers are

usually reserved for authentication and session key establishment.
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An authenticator is a value attached to a message to verify the authen-

ticity and data integrity of the message. One way to generate an authenti-

cator is to encrypt a message digest that is output by a cryptographic hash

function such as MD5 or one of the SHA family of hashes. If the message

digest is encrypted using the private key of a public-key cipher, the result-

ing authenticator is considered a digital signature, since the public key

can be used to verify that only the holder of the private key could have

generated it. Another kind of authenticator is a Message Authentication

Code, which is output by a hash-like function that takes a shared secret

value as a parameter. A hashed MAC is a MAC computed by applying a

cryptographic hash to the concatenation of the plaintext message and the

secret value.

A session key is used to secure a relatively short episode of com-

munication. The dynamic establishment of a session key depends on

longer-lived predistributed keys. The ownership of a predistributed pub-

lic key by a certain party can be attested to by a public key certificate

that is digitally signed by a trusted party. A Public Key Infrastructure is

a complete scheme for certifying such bindings and depends on a chain

or web of trust. Predistribution of keys for symmetric-key ciphers is differ-

ent because public certificates can’t be used and because symmetric-key

ciphers need a unique key for each pair of participants. A Key Distribution

Center is a trusted entity that shares a predistributed secret key with each

other participant, so that they can use session keys, not predistributed

keys, between themselves.

Authentication and session key establishment require a protocol to

assure the timeliness and originality of messages. Timestamps or nonces

are used to guarantee the freshness of the messages. We saw two authen-

tication protocols that use public-key ciphers, one that required synchro-

nized clocks and one that did not. Needham–Schroeder is a protocol for

authenticating two participants who each share a master symmetric-key

cipher key with a Key Distribution Center. Kerberos is an authentication

system based on the Needham–Schroeder protocol and specialized for

client/server environments. The Diffie–Hellman key agreement protocol

establishes a session key without predistributed keys and authentication.

We discussed several systems that provide security based on these

cryptographic algorithms and protocols. At the application level, PGP can

be used to protect email messages and SSH can be used to securely con-

nect to a remote machine. At the transport level, TLS can be used to

protect commercial transactions on the World Wide Web. At the network
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level, the IPsec architecture can be used to secure communication among

any set of hosts or routers on the Internet.

A firewall filters the messages that pass between the site it protects

and the rest of the network. Firewalls filter based on IP, TCP, and UDP

addresses, as well as fields of some application protocols. A stateful fire-

wall keeps track of the state of each connection so that it can allow valid

responses to be delivered to dynamically assigned ports. Although fire-

wall security has important limitations, it has the advantage of shifting

some responsibility for security from users and applications to system

administrators.

I
f you ask any Internet researcher “What would be the most important

feature to include in a future Internet if we could start from scratch?”

there is a pretty good chance the answer will include something

about better security. One way to think about the problem is that

the Internet was designed by a fairly small community who

wanted access to each other’s computers; today’s Internet is

used by a large, global community, including a reasonable

number of criminals who would also like to gain access to a

lot of other computers. Thus, the design of making open

access the default isn’t clearly a good match to today’s

world.

There are a lot of theories about how this situation might

be improved. One problem, of course, is that the Internet

WHAT’S NEXT: COMING TO GRIPS WITH SECURITY

is such a fundamental part of everyday life now that we

can’t easily imagine replacing it with a new, designed-

from-scratch version. There is, however, a fair amount of

“clean-slate” research underway, based on the theory that

working on a future Internet unhindered by questions of

incremental deployment might lead to some new insights

that could later be retrofitted to the current Internet. (See the

Further Reading section of Chapter 3 for some references.)

The near-term outlook seems to be for a continual playing out of

the cat-and-mouse game that has gone on for some time. Firewalls,

intrusion detection systems, and DoS-mitigation systems get more

sophisticated; attackers find new ways of working around the defenses of

these systems; the systems evolve to become better at defending against the
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new attacks, and so on. On the positive side, many security systems work quite well;

there wouldn’t be nearly as much e-commerce on theWeb as there is were it not for

the effectiveness of Transport Layer Security and all the cryptographic methods on

which it depends.

One phrase that has been used to describe a vision for a future Internet is “An

Internet deserving of society’s trust.” It is clear that realizing that vision is a significant

challenge and that securing networks will be an area of research and innovation for

some time to come.

n FURTHER READING

The first two security-related papers, taken together, give a good overview

of the topic. The article by Lampson et al. contains a formal treatment of

security, while the Satyanarayanan paper gives a nice description of how

a secure system is designed in practice. The third paper is a thorough and

somewhat alarming overview of how worms and viruses spread and how

a well-planned attack could be sped up.

n Lampson, B. et al. Authentication in distributed systems: Theory

and practice. ACM Transactions on Computer Systems

10(4):265–310, November 1992.

n Satyanarayanan, M. Integrating security in a large distributed

system. ACM Transactions on Computer Systems 7(3):247–280,

August 1989.

n Staniford, S., V. Paxson, and N. Weaver. How to Own the Internet in

Your Spare Time. USENIX Security Symposium 2002, pp. 149–167.

San Francisco, CA, August 2002.

There are several good books covering the full gamut of network secu-

rity. We recommend Schneier [Sch95], Stallings [Sta03], and Kaufman

et al. [KPS02]. The first two give comprehensive treatments of the topic,

while the last gives a very readable overview of the subject. The full IPSec

architecture is defined in a series of RFCs: [Ken05a], [Eas05], [MG98a],

[MG98b], [MD98], [Ken05b], and [Kau05]. The Open PGP standard is

defined in [Cal07], and the latest TLS standard is [DR08]. A book by Bar-

rett and Silverman [Bar01] gives a thorough description of SSH. Menezes

et al. [MvOV96] is a comprehensive cryptography reference (a copy can

be freely downloaded from the URL listed below).
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A discussion of the problem of recognizing and defending against

denial-of-service attacks can be found in Moore et al. [MVS01], Spats-

check and Peterson [SP99], and Qiexh et al. [QPP02]. Recent techniques

used to identify the source of attacks can be found in papers by Sav-

age et al. [SWKA00] and Snoeren et al. [SPS+01]. The increasing threat

of DDoS attacks is discussed by Garber [Gar00] and Harrison [Har00],

and early approaches to defending against such attacks are reported in

a paper by Park and Lee [PL01]. A novel approach to DoS prevention

which falls in the “clean slate” category is the TVA approach by Yang et al.

[YWA08].

Finally, we recommend the following live references:

n http://www.cert.org/: The website of CERT, an organization focused

on computer security issues.

n http://www.cacr.math.uwaterloo.ca/hac/: Downloadable copy of

[MvOV96] a comprehensive cryptography reference.

EXERCISES

1. Find or install an encryption utility (e.g., the Unix des command

or pgp) on your system. Read its documentation and experiment

with it. Measure how fast it is able to encrypt and decrypt data.

Are these two rates the same? Try to compare these timing results

using different key sizes; for example, compare AES with

triple-DES.

2. Diagram cipher block chaining as described in Section 8.1.1.

3. Learn about a key escrow, or key surrender, scheme (for example,

Clipper). What are the pros and cons of key escrow?

4. A good cryptographic hashing algorithm should produce random

outputs; that is, the probability of any given hash value should be

approximately the same as any other for randomly chosen input

data. What would be the consequence of using a hash algorithm

whose outputs were not random? Consider, for example, the

case where some hash values are twice as likely to occur as others.

5. Suppose Alice uses the Needham–Schroeder authentication

protocol described in Section 8.3.3 to initiate a session with Bob.

Further suppose that an adversary is able to eavesdrop on the
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authentication messages and, long after the session has

completed, discover the (unencrypted) session key. How could

the adversary deceive Bob into authenticating the adversary as

Alice?

6. One mechanism for resisting replay attacks in password

authentication is to use one-time passwords: A list of passwords is

prepared, and once password[N ] has been accepted the server

decrements N and prompts for password[N − 1] next time. At

N = 0 a new list is needed. Outline a mechanism by which the

user and server need only remember one master password mp

and have available locally a way to compute password[N ] =

f(mp,N). Hint: Let g be an appropriate one-way function (e.g.,

MD5) and let password[N ] = gN (mp) = g applied N times to mp.

Explain why knowing password[N ] doesn’t help reveal

password[N − 1].

7. Suppose a user employs one-time passwords as above (or, for

that matter, reusable passwords), but that the password is

transmitted sufficiently slowly.

(a) Show that an eavesdropper can gain access to the remote

server with a relatively modest number of guesses. (Hint: The

eavesdropper starts guessing after the original user has typed

all but one character of the password.)

(b) To what other attacks might a user of one-time passwords be

subject?

8. The Diffie–Hellman key exchange protocol is vulnerable to a

“man-in-the-middle” attack as shown in Section 8.3.4 and

Figure 8.12. Outline how Diffie–Hellman can be extended to

protect against this possibility.

9. Suppose we have a very short secret s (e.g., a single bit or even a

Social Security number), and we wish to send someone else a

message m now that will not reveal s but that can be used later to

verify that we did know s. Explain why m = MD5(s) or m = E(s)

with RSA encryption would not be secure choices, and suggest a

better choice.

10. Suppose two people want to play poker over the network. To deal

the cards they need a mechanism for fairly choosing a random

number x between them; each party stands to lose if the other
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party can unfairly influence the choice of x. Describe such a

mechanism. Hint: You may assume that if either of two bit strings

x1 and x2 are random, then the exclusive-OR x = x1 ⊕x2 is

random.

11. Estimate the probabilities of finding two messages with the same

MD5 checksum, given total numbers of messages of 263, 264, and

265. Hint: This is the Birthday Problem again, as in Exercise 48 in

Chapter 2, and again the probability that the k + 1th message has

a different checksum from each of the preceding k is 1− k/2128.

However, the approximation in the hint there for simplifying the

product fails rather badly now. So, instead, take the log of each

side and use the approximation log(1− k/2128) ≈−k/2128.

12. Suppose we wanted to encrypt a Telnet session with, say, 3DES.

Telnet sends lots of 1-byte messages, while 3DES encrypts in

blocks of 8 bytes at a time. Explain how 3DES might be used

securely in this setting.

13. Consider the following simple UDP protocol (based loosely on

TFTP, Request for Comments 1350) for downloading files:

n Client sends a file request.

n Server replies with first data packet.

n Client sends ACK, and the two proceed using

stop-and-wait.

Suppose client and server possess keys KC and KS , respectively,

and that these keys are known to each other.

(a) Extend the file downloading protocol, using these keys and

MD5, to provide sender authentication and message

integrity. Your protocol should also be resistant to replay

attacks.

(b) How does the extra information in your revised protocol

protect against the arrival of late packets from prior

connection incarnations and sequence number wraparound?

14. Using the browser of your choice, find out what certification

authorities for HTTPS your browser is configured by default to

trust. Do you trust these agencies? Find out what happens

when you disable trust of some or all of these certification

authorities.
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15. Use an OpenPGP implementation such as GnuPG to do the

following. Note that no email is involved—you are working

exclusively with files on a single machine.

(a) Generate a public–private key pair.

(b) Use your public key to encrypt a file, as if for secure storage,

and then use your private key to decrypt it.

(c) Use your key pair to digitally sign an unencrypted file and

then, as if you were someone else, verify your signature using

your public key.

(d) Consider the first public–private key pair as belonging to

Alice, and generate a second public–private key pair, for Bob.

Playing the role of Alice, encrypt and sign a file intended for

Bob. (Be sure to sign as Alice, not Bob.) Then, playing the role

of Bob, verify Alice’s signature and decrypt the file.

16. Consider a certification hierarchy as described in Section 8.2.1.

A root CA signs a certificate for a second-tier CA, and the

second-tier CA signs a certificate for Alice. Bob has the public key

for the root CA, so he can verify the certificate of the second-tier

CA. Why might Bob still not trust that the certificate for Alice

truly establishes Alice as the owner of the public key in the

certificate?

17. PuTTY (pronounced “putty”) is a popular free SSH client—an

application that implements the client side of SSH

connections—for Unix and Windows. Its documentation is

accessible on the Web.

(a) How does PuTTY handle authentication of a server that it has

not previously connected to?

(b) How are clients authenticated to servers?

(c) PuTTY supports several ciphers. How does it determine

which one to use for a particular connection?

(d) PuTTY supports ciphers, such as DES, that might be

considered too weak for some—or any—situations. Why?

How does PuTTY determine which ciphers are weak, and

how does it use that information?

(e) For a given connection, PuTTY lets a user specify a maximum

amount of time and/or transmitted data after which PuTTY

will initiate the establishment of a new session key, which the
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documentation refers to as a key exchange or rekeying. What

is the motivation behind this feature?

(f ) Use PuTTYgen, the PuTTY key generator, to generate a

public–private key pair for one of the PuTTY-supported

public key ciphers.

18. Suppose you want your firewall to block all incoming Telnet

connections but to allow outbound Telnet connections. One

approach would be to block all inbound packets to the

designated Telnet port (23).

(a) We might want to block inbound packets to other ports as

well, but what inbound TCP connections must be permitted

in order not to interfere with outbound Telnet?

(b) Now suppose your firewall is allowed to use the TCP header

Flags bits in addition to the port numbers. Explain how you

can achieve the desired Telnet effect here while at the same

time allowing no inbound TCP connections.

19. Suppose a firewall is configured to allow outbound TCP

connections but inbound connections only to specified ports.

The FTP protocol now presents a problem: When an inside client

contacts an outside server, the outbound TCP control connection

can be opened normally but the TCP data connection

traditionally is inbound.

(a) Look up the FTP protocol in, for example, Request for

Comments 959. Find out how the PORT command works.

Discuss how the client might be written so as to limit the

number of ports to which the firewall must grant inbound

access. Can the number of such ports be limited to one?

(b) Find out how the FTP PASV command can be used to solve

this firewall problem.

20. Suppose filtering routers are arranged as in Figure 8.21; the

primary firewall is R1. Explain how to configure R1 and R2 so that

outsiders can Telnet to net 2 but not to hosts on net 1. To avoid

“leapfrogging” break-ins to net 1, also disallow Telnet

connections from net 2 to net 1.

21. Why might an Internet Service Provider want to block certain

outbound traffic?
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R2
net 1 net 2

R1Outside world

n FIGURE 8.21 Diagram for Exercise 18.

22. It is said that IPsec may not work with Network Address

Translation (NAT) (RFC 1631). However, whether IPsec will work

with NAT depends on which mode of IPsec and NAT we use.

Suppose we use true NAT, where only IP addresses are translated

(without port translation). Will IPsec and NAT work in each of the

following cases? Explain why or why not.

(a) IPsec uses ESP transport mode.

(b) IPsec uses ESP tunnel mode.

(c) What if we use PAT (Port Address Translation), also known as

Network Address/Port Translation (NAPT) in NAT, where in

addition to IP addresses port numbers will be translated to

share one IP address from outside the private network?
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Now this is not the end. It is not even the beginning of the end. But it is, perhaps,

the end of the beginning.

–Winston Churchill

W
e started this book by talking about application programs—

everything fromweb browsers to videoconferencing tools—that

people want to run over computer networks. In the intervening

chapters, we have developed, one building block at a time, the

networking infrastructure needed tomake such applications pos-

sible. We have now come full circle, back to network applica-

tions. These applications are part network protocol (in the sense

that they exchange messages with their peers on other ma-

chines) and part traditional application program (in the sense

that they interact with the windowing system, the file

PROBLEM: APPLICATIONS NEED THEIR OWN PROTOCOLS

system, and ultimately the user). This chapter explores some

of the most popular network applications available today.

Looking at applications drives home the systems approach

that we have emphasized throughout this book. That is, the

best way to build effective networked applications is to under-

stand the building blocks that a network can provide and how

those blocks can interact with each other. Thus, for example, a

particular networked application might need to make use of a

Computer Networks: A Systems Approach. DOI: 10.1016/B978-0-12-385059-1.00009-0

Copyright © 2012 Elsevier, Inc. All rights reserved.
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reliable transport protocol, authentication and privacy mechanisms, and resource

allocation capabilities of the underlying network. Applications oftenwork best when

the application developer knows how to make the best use of these facilities (and

there are also plenty of counter-examples of applications making poor use of avail-

able networking capabilities). Applications typically need their ownprotocols, too, in

many cases using the same principles that we have seen in our prior examination of

lower layer protocols. Thus, our focus in this chapter is on how to put together the

ideas and techniques already described to build effective networked applications.

Said another way, if you ever imagine yourself writing a network application, then

you will by definition also become a protocol designer (and implementer).

We proceed by examining a variety of familiar, and not so familiar, network appli-

cations. These range from exchanging email and surfing the Web, to integrating

applications across businesses, to multimedia applications like vic and vat, to man-

aging a set of network elements, to emerging peer-to-peer and content distribution

networks. This list is by no means exhaustive, but it does serve to illustrate many of

the key principles of designing and building applications. Applications need to pick

and choose the appropriate building blocks that are available at other layers either

inside the network or in the host protocol stacks and then augment those underlying

services to provide the precise communication service required by the application.

9.1 TRADITIONAL APPLICATIONS

We begin our discussion of applications by focusing on two of the most

popular—the World Wide Web and email. Broadly speaking, both of

these applications use the request/reply paradigm—users send requests

to servers, which then respond accordingly. We refer to these as “tra-

ditional” applications because they typify the sort of applications that

have existed since the early days of computer networks (although the

Web is a lot newer than email but has its roots in file transfers that pre-

dated it). By contrast, later sections will look at a class of applications

that have become feasible only relatively recently: streaming applications

(e.g., multimedia applications like video and audio) and various overlay-

based applications. (Note that there is a bit of a blurring between these

classes, as you can of course get access to streaming multimedia data over

the Web, but for now we’ll focus on the general usage of the Web to request

pages, images, etc.)
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Before taking a close look at each of these applications, there are three

general points that we need to make. The first is that it is important

to distinguish between application programs and application protocols.

For example, the HyperText Transport Protocol (HTTP) is an application

protocol that is used to retrieve Web pages from remote servers. Many dif-

ferent application programs—that is, web clients like Internet Explorer,

Chrome, Firefox, and Safari—provide users with a different look and feel,

but all of them use the same HTTP protocol to communicate with web

servers over the Internet. Indeed, it is the fact that the protocol is pub-

lished and standardized that enables application programs developed by

many different companies and individuals to interoperate. That is how so

many browsers are able to interoperate with all the web servers (of which

there are also many varieties).

This section looks at two very widely used, standardized application

protocols:

n Simple Mail Transfer Protocol (SMTP) is used to exchange

electronic mail.

n HyperText Transport Protocol (HTTP) is used to communicate

between web browsers and web servers.

We’ll also look at how custom application protocols are defined in the Web

Services architecture.

The second point is that, since the application protocols described in

this section follow the same request/reply communication pattern, you

might expect that they would be built on top of a Remote Procedure Call

(RPC) transport protocol. This is not the case, however, as they are instead

implemented on top of TCP. In effect, each protocol reinvents a simple

RPC-like mechanism on top of a reliable transport protocol (TCP). We

say “simple” because each protocol is not designed to support arbitrary

remote procedure calls of the sort discussed in Section 5.3, but is instead

designed to send and respond to a specific set of request messages.

Finally, we observe that many application layer protocols, including

HTTP and SMTP, have a companion protocol that specifies the format

of the data that can be exchanged. This is one reason WHY these pro-

tocols are relatively simple: Much of the complexity is managed in this

companion document. For example, SMTP is a protocol for exchanging

electronic mail messages, but RFC 822 and Multipurpose Internet Mail

Extensions (MIME) define the format of email messages. Similarly, HTTP
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is a protocol for fetching Web pages, but HyperText Markup Language

(HTML) is a companion specification that defines the basic form of those

pages.

9.1.1 Electronic Mail (SMTP, MIME, IMAP)

Email is one of the oldest network applications. After all, what could be

more natural than wanting to send a message to the user at the other

end of a cross-country link you just managed to get running? Surprisingly,

the pioneers of the ARPANET had not really envisioned email as a key

application when the network was created—remote access to comput-

ing resources was the main design goal—but it turned out to be a useful

application that continues to be extremely popular.

As noted above, it is important (1) to distinguish the user interface (i.e.,

your mail reader) from the underlying message transfer protocols (such as

SMTP or IMAP), and (2) to distinguish between this transfer protocol and

a companion protocol (RFC 822 and MIME) that defines the format of the

messages being exchanged. We start by looking at the message format.

Message Format

RFC 822 defines messages to have two parts: a header and a body. Both

parts are represented in ASCII text. Originally, the body was assumed to be

simple text. This is still the case, although RFC 822 has been augmented

by MIME to allow the message body to carry all sorts of data. This data is

still represented as ASCII text, but because it may be an encoded version

of, say, a JPEG image, it’s not necessarily readable by human users. More

on MIME in a moment.

The message header is a series of <CRLF>-terminated lines.

(<CRLF> stands for carriage return + line feed, which are a pair of ASCII

control characters often used to indicate the end of a line of text.) The

header is separated from the message body by a blank line. Each header

line contains a type and value separated by a colon. Many of these header

lines are familiar to users, since they are asked to fill them out when

they compose an email message; for example, the To: header identifies

the message recipient, and the Subject: header says something about the

purpose of the message. Other headers are filled in by the underlying

mail delivery system. Examples include Date: (when the message was

transmitted), From: (what user sent the message), and Received: (each
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mail server that handled this message). There are, of course, many other

header lines; the interested reader is referred to RFC 822.

RFC 822 was extended in 1993 (and updated quite a few times since

then) to allow email messages to carry many different types of data:

audio, video, images, PDF documents, and so on. MIME consists of three

basic pieces. The first piece is a collection of header lines that augment

the original set defined by RFC 822. These header lines describe, in var-

ious ways, the data being carried in the message body. They include

MIME-Version: (the version of MIME being used), Content-Description:

(a human-readable description of what’s in the message, analogous to

the Subject: line), Content-Type: (the type of data contained in the mes-

sage), and Content-Transfer-Encoding (how the data in the message body

is encoded).

The second piece is definitions for a set of content types (and

subtypes). For example, MIME defines two different still image types,

denoted image/gif and image/jpeg, each with the obvious meaning. As

another example, text/plain refers to simple text you might find in a vanilla

822-style message, while text/richtext denotes a message that contains

“marked up” text (text using special fonts, italics, etc.). As a third example,

MIME defines an application type, where the subtypes correspond to the

output of different application programs (e.g., application/postscript and

application/msword).

MIME also defines a multipart type that says how a message carry-

ing more than one data type is structured. This is like a programming

language that defines both base types (e.g., integers and floats) and com-

pound types (e.g., structures and arrays). One possible multipart subtype

is mixed, which says that the message contains a set of independent data

pieces in a specified order. Each piece then has its own header line that

describes the type of that piece.

The third piece is a way to encode the various data types so they can

be shipped in an ASCII email message. The problem is that, for some

data types (a JPEG image, for example), any given 8-bit byte in the image

might contain one of 256 different values. Only a subset of these values

are valid ASCII characters. It is important that email messages contain

only ASCII, because they might pass through a number of intermediate

systems (gateways, as described below) that assume all email is ASCII

and would corrupt the message if it contained non-ASCII characters. To

address this issue, MIME uses a straightforward encoding of binary data
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into the ASCII character set. The encoding is called base64. The idea is to

map every three bytes of the original binary data into four ASCII char-

acters. This is done by grouping the binary data into 24-bit units and

breaking each such unit into four 6-bit pieces. Each 6-bit piece maps onto

one of 64 valid ASCII characters; for example, 0 maps onto A, 1 maps onto

B, and so on. If you look at a message that has been encoded using the

base64 encoding scheme, you’ll notice only the 52 upper- and lowercase

letters, the 10 digits 0 through 9, and the special characters + and /. These

are the first 64 values in the ASCII character set.

As one aside, so as to make reading mail as painless as possible for

those who still insist on using text-only mail readers, a MIME message

that consists of regular text only can be encoded using 7-bit ASCII. There’s

also a readable encoding for mostly ASCII data.

Putting this all together, a message that contains some plain text, a

JPEG image, and a PostScript file would look something like this:

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="-------417CA6E2DE4ABCAFBC5"

From: Alice Smith <Alice@cisco.com>

To: Bob@cs.Princeton.edu

Subject: promised material

Date: Mon, 07 Sep 1998 19:45:19 -0400

---------417CA6E2DE4ABCAFBC5

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

Bob,

Here's the jpeg image and draft report I promised.

--Alice

---------417CA6E2DE4ABCAFBC5

Content-Type: image/jpeg

Content-Transfer-Encoding: base64

... unreadable encoding of a jpeg figure
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---------417CA6E2DE4ABCAFBC5

Content-Type: application/postscript; name="draft.ps"

Content-Transfer-Encoding: 7bit

... readable encoding of a PostScript document

In this example, the Content-Type line in the message header says that this

message contains various pieces, each denoted by a character string that

does not appear in the data itself. Each piece then has its own Content-

Type and Content-Transfer-Encoding lines.

Message Transfer

For many years, the majority of email was moved from host to host using

only SMTP. While SMTP continues to play a central role, it is now just

one email protocol of several, Internet Message Access Protocol (IMAP)

and Post Office Protocol (POP) being two other important protocols for

retrieving mail messages. We’ll begin our discussion by looking at SMTP,

and move on to IMAP below.

To place SMTP in the right context, we need to identify the key players.

First, users interact with a mail reader when they compose, file, search,

and read their email. Countless mail readers are available, just like there

are many web browsers to choose from. In the early days of the Internet,

users typically logged into the machine on which their mailbox resided,

and the mail reader they invoked was a local application program that

extracted messages from the file system. Today, of course, users remotely

access their mailbox from their laptop or smartphone; they do not first log

into the host that stores their mail (a mail server). A second mail transfer

protocol, such as POP or IMAP, is used to remotely download email from

a mail server to the user’s device.

Second, there is a mail daemon (or process) running on each host

that holds a mailbox. You can think of this process, also called a mes-

sage transfer agent (MTA), as playing the role of a post office: Users (or

their mail readers) give the daemon messages they want to send to other

users, the daemon uses SMTP running over TCP to transmit the mes-

sage to a daemon running on another machine, and the daemon puts

incoming messages into the user’s mailbox (where that user’s mail reader

can later find them). Since SMTP is a protocol that anyone could imple-

ment, in theory there could be many different implementations of the

mail daemon. It turns out, though, that there are only a few popular
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implementations, with the old sendmail program from Berkeley Unix and

postfix being the most widespread.

While it is certainly possible that the MTA on a sender’s machine estab-

lishes an SMTP/TCP connection to the MTA on the recipient’s mail server,

in many cases the mail traverses one or more mail gateways on its route

from the sender’s host to the receiver’s host. Like the end hosts, these

gateways also run a message transfer agent process. It’s not an accident

that these intermediate nodes are called gateways since their job is to

store and forward email messages, much like an “IP gateway” (which we

have referred to as a router) stores and forwards IP datagrams. The only

difference is that a mail gateway typically buffers messages on disk and is

willing to try retransmitting them to the next machine for several days,

while an IP router buffers datagrams in memory and is only willing to

retry transmitting them for a fraction of a second. Figure 9.1 illustrates

a two-hop path from the sender to the receiver.

Why, you might ask, are mail gateways necessary? Why can’t the

sender’s host send the message to the receiver’s host? One reason is

that the recipient does not want to include the specific host on which

he or she reads email in his or her address. Another is scale: In large

organizations, it’s often the case that a number of different machines

hold the mailboxes for the organization. For example, mail delivered to

Bob@cs.princeton.edu is first sent to a mail gateway in the CS Depart-

ment at Princeton (that is, to the host named cs.princeton.edu), and then

forwarded—involving a second connection—to the specific machine on

which Bob has a mailbox. The forwarding gateway maintains a database

that maps users into the machine on which their mailbox resides; the

Mail

reader

Mail

daemon

SMTP/TCP

Mail gateway

Mail

daemon

SMTP/TCP

Mail

reader

Mail

daemon

n FIGURE 9.1 Sequence of mail gateways store and forward email messages.
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sender need not be aware of this specific name. (The list of Received:

header lines in the message will help you trace the mail gateways that a

given message traversed.) Yet another reason, particularly true in the early

days of email, is that the machine that hosts any given user’s mailbox may

not always be up or reachable, in which case the mail gateway holds the

message until it can be delivered.

Independent of how many mail gateways are in the path, an indepen-

dent SMTP connection is used between each host to move the message

closer to the recipient. Each SMTP session involves a dialog between the

two mail daemons, with one acting as the client and the other acting as

the server. Multiple messages might be transferred between the two hosts

during a single session. Since RFC 822 defines messages using ASCII as

the base representation, it should come as no surprise to learn that SMTP

is also ASCII based. This means it is possible for a human at a keyboard to

pretend to be an SMTP client program.

SMTP is best understood by a simple example. The following is

an exchange between sending host cs.princeton.edu and receiving host

cisco.com. In this case, user Bob at Princeton is trying to send mail to users

Alice and Tom at Cisco. The lines sent by cs.princeton.edu are shown in

black and the lines sent by cisco.com are shown in teal. Extra blank lines

have been added to make the dialog more readable.

HELO cs.princeton.edu

250 Hello daemon@mail.cs.princeton.edu [128.12.169.24]

MAIL FROM:<Bob@cs.princeton.edu>

250 OK

RCPT TO:<Alice@cisco.com>

250 OK

RCPT TO:<Tom@cisco.com>

550 No such user here

DATA

354 Start mail input; end with <CRLF>.<CRLF>

Blah blah blah...

...etc. etc. etc.
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<CRLF>.<CRLF>

250 OK

QUIT

221 Closing connection

As you can see, SMTP involves a sequence of exchanges between the

client and the server. In each exchange, the client posts a command (e.g.,

HELO, MAIL, RCPT, DATA, QUIT) and the server responds with a code

(e.g., 250, 550, 354, 221). The server also returns a human-readable expla-

nation for the code (e.g., No such user here). In this particular example,

the client first identifies itself to the server with the HELO command. It

gives its domain name as an argument. The server verifies that this name

corresponds to the IP address being used by the TCP connection; you’ll

notice the server states this IP address back to the client. The client then

asks the server if it is willing to accept mail for two different users; the

server responds by saying “yes” to one and “no” to the other. Then the

client sends the message, which is terminated by a line with a single

period (“.”) on it. Finally, the client terminates the connection.

There are, of course, many other commands and return codes. For

example, the server can respond to a client’s RCPT command with a 251

code, which indicates that the user does not have a mailbox on this host,

but that the server promises to forward the message onto another mail

daemon. In other words, the host is functioning as a mail gateway. As

another example, the client can issue a VRFY operation to verify a user’s

email address, but without actually sending a message to the user.

The only other point of interest is the arguments to the MAIL and

RCPT operations; for example, FROM:<Bob@cs.princeton.edu> and

TO:<Alice@cisco.com>, respectively. These look a lot like 822 header

fields, and in some sense they are. What actually happens is that the

mail daemon parses the message to extract the information it needs to

run SMTP. The information it extracts is said to form an envelope for

the message. The SMTP client uses this envelope to parameterize its

exchange with the SMTP server. One historical note: The reason sendmail

became so popular is that no one wanted to reimplement this message

parsing function. While today’s email addresses look pretty tame (e.g.,

Bob@cs.princeton.edu), this was not always the case. In the days before

everyone was connected to the Internet, it was not uncommon to see

email addresses of the form user%host@site!neighbor.
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Mail Reader

The final step is for the user to actually retrieve his or her messages from

the mailbox, read them, reply to them, and possibly save a copy for future

reference. The user performs all these actions by interacting with a mail

reader. As pointed out earlier, this reader was originally just a program

running on the same machine as the user’s mailbox, in which case it could

simply read and write the file that implements the mailbox. This was the

common case in the pre-laptop era. Today, most often the user accesses

his or her mailbox from a remote machine using yet another protocol,

such as POP or IMAP. It is beyond the scope of this book to discuss the user

interface aspects of the mail reader, but it is definitely within our scope to

talk about the access protocol. We consider IMAP, in particular.

IMAP is similar to SMTP in many ways. It is a client/server proto-

col running over TCP, where the client (running on the user’s desktop

machine) issues commands in the form of <CRLF>-terminated ASCII

text lines and the mail server (running on the machine that maintains

the user’s mailbox) responds in kind. The exchange begins with the client

authenticating him- or herself and identifying the mailbox he or she

wants to access. This can be represented by the simple state transition

diagram shown in Figure 9.2. In this diagram, LOGIN, AUTHENTICATE,

SELECT, EXAMINE, CLOSE, and LOGOUT are example commands that

the client can issue, while OK is one possible server response. Other com-

mon commands include FETCH, STORE, DELETE, and EXPUNGE, with

the obvious meanings. Additional server responses include NO (client

does not have permission to perform that operation) and BAD (command

is ill formed).

When the user asks to FETCH a message, the server returns it in MIME

format and the mail reader decodes it. In addition to the message itself,

IMAP also defines a set of message attributes that are exchanged as part

of other commands, independent of transferring the message itself. Mes-

sage attributes include information like the size of the message and,

more interestingly, various flags associated with the message (e.g., Seen,

Answered, Deleted, and Recent). These flags are used to keep the client

and server synchronized; that is, when the user deletes a message in the

mail reader, the client needs to report this fact to the mail server. Later,

should the user decide to expunge all deleted messages, the client issues

an EXPUNGE command to the server, which knows to actually remove all

earlier deleted messages from the mailbox.
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(1)

(4)

(7)

(7)

(6)

(7)

(2) (3)

(5)

Connection established

Server greeting

Logout

Selected

Authenticated

Not authenticated

Both sides close the connection

(1) Connection without preauthentication (OK greeting)

(2) Preauthenticated connection (PREAUTH greeting)

(3) Rejected connection (BYE greeting)

(7) LOGOUT command, server shutdown, or connection closed

(4) Successful LOGIN or AUTHENTICATE command

(5) Successful SELECT or EXAMINE command

(6) CLOSE command, or failed SELECT or EXAMINE command

n FIGURE 9.2 IMAP state transition diagram.

Finally, note that when the user replies to a message, or sends a new

message, the mail reader does not forward the message from the client to

the mail server using IMAP, but it instead uses SMTP. This means that the

user’s mail server is effectively the first mail gateway traversed along the

path from the desktop to the recipient’s mailbox.

9.1.2 WorldWideWeb (HTTP)

The World Wide Web has been so successful and has made the Internet

accessible to so many people that sometimes it seems to be synonymous
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with the Internet. In fact, the design of the system that became the

Web started around 1989, long after the Internet had become a widely

deployed system. The original goal of the Web was to find a way to

organize and retrieve information, drawing on ideas about hypertext—

interlinked documents—that had been around since at least the 1960s.1

The core idea of hypertext is that one document can link to another doc-

ument, and the protocol (HTTP) and document language (HTML) were

designed to meet that goal.

One helpful way to think of the Web is as a set of cooperating clients

and servers, all of whom speak the same language: HTTP. Most people are

exposed to the Web through a graphical client program or web browser

like Safari, Chrome, Firefox, or Internet Explorer. Figure 9.3 shows the

Firefox browser in use, displaying a page of information from Princeton

University.

Clearly, if you want to organize information into a system of linked doc-

uments or objects, you need to be able to retrieve one document to get

started. Hence, any web browser has a function that allows the user to

obtain an object by opening a URL. Uniform Resource Locators (URLs)

are so familiar to most of us by now that it’s easy to forget that they haven’t

been around forever. They provide information that allows objects on the

Web to be located, and they look like the following:

http://www.cs.princeton.edu/index.html

If you opened that particular URL, your web browser would open a TCP

connection to the web server at a machine called www.cs.princeton.edu

and immediately retrieve and display the file called index.html. Most files

on the Web contain images and text, and many have other objects such as

audio and video clips, pieces of code, etc. They also frequently include

URLs that point to other files that may be located on other machines,

which is the core of the “hypertext” part of HTTP and HTML. A web

browser has some way in which you can recognize URLs (often by high-

lighting or underlining some text) and then you can ask the browser to

open them. These embedded URLs are called hypertext links. When you

ask your web browser to open one of these embedded URLs (e.g., by

pointing and clicking on it with a mouse), it will open a new connec-

tion and retrieve and display a new file. This is called following a link.

It thus becomes very easy to hop from one machine to another around

1A short history of the Web provided by the World Wide Web consortium traces its roots

to a 1945 article describing links between microfiche documents.
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n FIGURE 9.3 The Firefox web browser.

the network, following links to all sorts of information. Once you have a

means to embed a link in a document and allow a user to follow that link

to get another document, you have the basis of a hypertext system.

When you ask your browser to view a page, your browser (the client)

fetches the page from the server using HTTP running over TCP. Like SMTP,

HTTP is a text-oriented protocol. At its core, HTTP is a request/response

protocol, where every message has the general form

START_LINE <CRLF>

MESSAGE_HEADER <CRLF>

<CRLF>

MESSAGE_BODY <CRLF>
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where, as before, <CRLF> stands for carriage-return+ line-feed. The

first line (START LINE) indicates whether this is a request message or a

response message. In effect, it identifies the “remote procedure” to be

executed (in the case of a request message), or the status of the request

(in the case of a response message). The next set of lines specifies a col-

lection of options and parameters that qualify the request or response.

There are zero or more of these MESSAGE HEADER lines—the set is ter-

minated by a blank line—each of which looks like a header line in an email

message. HTTP defines many possible header types, some of which per-

tain to request messages, some to response messages, and some to the

data carried in the message body. Instead of giving the full set of possible

header types, though, we just give a handful of representative examples.

Finally, after the blank line comes the contents of the requested message

(MESSAGE BODY); this part of the message is where a server would place

the requested page when responding to a request, and it is typically empty

for request messages.

Why does HTTP run over TCP? The designers didn’t have to do it

that way, but TCP does provide a pretty good match to what HTTP

needs, particularly by providing reliable delivery (who wants a Web page

with missing data?), flow control, and congestion control. However, as

we’ll see below, there are a few issues that can arise from building a

request/response protocol on top of TCP, especially if you ignore the sub-

tleties of the interactions between the application and transport layer

protocols.

Request Messages

The first line of an HTTP request message specifies three things: the oper-

ation to be performed, the Web page the operation should be performed

on, and the version of HTTP being used. Although HTTP defines a wide

assortment of possible request operations—including write operations

that allow a Web page to be posted on a server—the two most common

operations are GET (fetch the specified Web page) and HEAD (fetch sta-

tus information about the specified Web page). The former is obviously

used when your browser wants to retrieve and display a Web page. The

latter is used to test the validity of a hypertext link or to see if a particu-

lar page has been modified since the browser last fetched it. The full set of

operations is summarized in Table 9.1. As innocent as it sounds, the POST

command enables much mischief (including spam) on the Internet.
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Table 9.1 HTTP Request Operations

Operation Description

OPTIONS Request information about available options

GET Retrieve document identified in URL

HEAD Retrieve metainformation about document identified in URL

POST Give information (e.g., annotation) to server

PUT Store document under specified URL

DELETE Delete specified URL

TRACE Loopback request message

CONNECT For use by proxies

For example, the START LINE

GET http://www.cs.princeton.edu/index.html

HTTP/1.1

says that the client wants the server on host www.cs.princeton.edu to

return the page named index.html. This particular example uses an abso-

lute URL. It is also possible to use a relative identifier and specify the host

name in one of the MESSAGE HEADER lines; for example,

GET index.html HTTP/1.1

Host: www.cs.princeton.edu

Here, Host is one of the possible MESSAGE HEADER fields. One of the

more interesting of these is If-Modified-Since, which gives the client a way

to conditionally request a Web page—the server returns the page only if it

has been modified since the time specified in that header line.

Response Messages

Like request messages, response messages begin with a single

START LINE. In this case, the line specifies the version of HTTP

being used, a three-digit code indicating whether or not the request

was successful, and a text string giving the reason for the response. For

example, the START LINE

HTTP/1.1 202 Accepted
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Table 9.2 Five Types of HTTP Result Codes

Code Type Example Reasons

1xx Informational request received, continuing process

2xx Success action successfully received, understood, and accepted

3xx Redirection further action must be taken to complete the request

4xx Client Error request contains bad syntax or cannot be fulfilled

5xx Server Error server failed to fulfill an apparently valid request

indicates that the server was able to satisfy the request, while

HTTP/1.1 404 Not Found

indicates that it was not able to satisfy the request because the page was

not found. There are five general types of response codes, with the first

digit of the code indicating its type. Table 9.2 summarizes the five types of

codes.

As with the unexpected consequences of the POST request message, it

is sometimes surprising how various response messages are used in prac-

tice. For example, request redirection (specifically code 302) turns out to

be a powerful mechanism that plays a big role in Content Distribution

Networks (CDNs) (see Section 9.4.3) by redirecting requests to a nearby

cache.

Also similar to request messages, response messages can contain

one or more MESSAGE HEADER lines. These lines relay additional

information back to the client. For example, the Location header line

specifies that the requested URL is available at another location.

Thus, if the Princeton CS Department Web page had moved from http://

www.cs.princeton.edu/index.html to http://www.princeton.edu/cs/index.html,

for example, then the server at the original address might respond with

HTTP/1.1 301 Moved Permanently

Location: http://www.princeton.edu/cs/index.html

In the common case, the response message will also carry the

requested page. This page is an HTML document, but since it may

carry nontextual data (e.g., a GIF image), it is encoded using MIME (see
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Section 9.1.1). Certain of the MESSAGE HEADER lines give attributes

of the page contents, including Content-Length (number of bytes in the

contents), Expires (time at which the contents are considered stale),

and Last-Modified (time at which the contents were last modified at the

server).

Uniform Resource Identifiers

The URLs that HTTP uses as addresses are one type of Uniform Resource

Identifier (URI). A URI is a character string that identifies a resource,

where a resource can be anything that has identity, such as a document,

an image, or a service.

The format of URIs allows various more specialized kinds of resource

identifiers to be incorporated into the URI space of identifiers. The first

part of a URI is a scheme that names a particular way of identifying a

certain kind of resource, such as mailto for email addresses or file for file

names. The second part of a URI, separated from the first part by a colon,

is the scheme-specific part. It is a resource identifier consistent with the

scheme in the first part, as in the URIs

mailto:santa@northpole.org

and

file:///C:/foo.html

A resource doesn’t have to be retrievable or accessible. We saw an

example of this earlier in Section 7.1.3—extensible markup language

(XML) namespaces are identified by URIs that look an awful lot like URLs,

but strictly speaking they are not locators because they don’t tell you how

to locate something; they just provide a globally unique identifier for the

namespace. There is no requirement that you can retrieve anything at

the URI given as the target namespace of an XML document. We’ll see

another example of a URI that is not a URL in Section 9.2.1.

TCP Connections

The original version of HTTP (1.0) established a separate TCP connection

for each data item retrieved from the server. It’s not too hard to see how

this was a very inefficient mechanism: connection setup and teardown

messages had to be exchanged between the client and server even if all the

client wanted to do was verify that it had the most recent copy of a page.
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FIN

SYN

Server processes

request

Server processes

request

Client parses

response

n FIGURE 9.4 HTTP 1.0 behavior.

Thus, retrieving a page that included some text and a dozen icons or other

small graphics would result in 13 separate TCP connections being estab-

lished and closed. Figure 9.4 shows the sequence of events for fetching a

page that has just a single embedded object. Colored lines indicate TCP

messages, while black lines indicate the HTTP requests and responses.

(Some of the TCP ACKs are not shown to avoid cluttering the picture.) You

can see two round trip times are spent setting up TCP connections while

another two (at least) are spent getting the page and image. As well as the

latency impact, there is also processing cost on the server to handle the

extra TCP connection establishment and termination.

To overcome this situation, HTTP version 1.1 introduced persis-

tent connections—the client and server can exchange multiple request/

response messages over the same TCP connection. Persistent con-

nections have many advantages. First, they obviously eliminate the
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Server processes

request

Server processes

request

n FIGURE 9.5 HTTP 1.1 behavior with persistent connections.

connection setup overhead, thereby reducing the load on the server,

the load on the network caused by the additional TCP packets, and the

delay perceived by the user. Second, because a client can send multiple

request messages down a single TCP connection, TCP’s congestion win-

dow mechanism is able to operate more efficiently. This is because it’s

not necessary to go through the slow start phase for each page. Figure 9.5

shows the transaction from Figure 9.4 using a persistent connection in the

case where the connection is already open (presumably due to some prior

access of the same server).

Persistent connections do not come without a price, however. The

problem is that neither the client nor server necessarily knows how long

to keep a particular TCP connection open. This is especially critical on

the server, which might be asked to keep connections opened on behalf

of thousands of clients. The solution is that the server must time out and

close a connection if it has received no requests on the connection for a

period of time. Also, both the client and server must watch to see if the

other side has elected to close the connection, and they must use that

information as a signal that they should close their side of the connection

as well. (Recall that both sides must close a TCP connection before it is

fully terminated.) Concerns about this added complexity may be one rea-

son why persistent connections were not used from the outset, but today

it is widely accepted that the benefits of persistent connections more than

offset the drawbacks.
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Caching

One of the most active areas of research (and entrepreneurship) in the

Internet today is how to effectively cache Web pages. Caching has many

benefits. From the client’s perspective, a page that can be retrieved from

a nearby cache can be displayed much more quickly than if it has to be

fetched from across the world. From the server’s perspective, having a

cache intercept and satisfy a request reduces the load on the server.

Caching can be implemented in many different places. For example, a

user’s browser can cache recently accessed pages and simply display the

cached copy if the user visits the same page again. As another example, a

site can support a single site-wide cache. This allows users to take advan-

tage of pages previously downloaded by other users. Closer to the middle

of the Internet, Internet Service Providers (ISPs) can cache pages. Note

that, in the second case, the users within the site most likely know what

machine is caching pages on behalf of the site, and they configure their

browsers to connect directly to the caching host. This node is sometimes

called a proxy. In contrast, the sites that connect to the ISP are probably

not aware that the ISP is caching pages. It simply happens to be the case

that HTTP requests coming out of the various sites pass through a com-

mon ISP router. This router can peek inside the request message and look

at the URL for the requested page. If it has the page in its cache, it returns

it. If not, it forwards the request to the server and watches for the response

to fly by in the other direction. When it does, the router saves a copy in the

hope that it can use it to satisfy a future request.2

No matter where pages are cached, the ability to cache Web pages is

important enough that HTTP has been designed to make the job easier.

The trick is that the cache needs to make sure it is not responding with an

out-of-date version of the page. For example, the server assigns an expi-

ration date (the Expires header field) to each page it sends back to the

client (or to a cache between the server and client). The cache remem-

bers this date and knows that it need not reverify the page each time it is

requested until after that expiration date has passed. After that time (or

if that header field is not set) the cache can use the HEAD or conditional

GET operation (GET with If-Modified-Since header line) to verify that it

2There are quite a few issues with this sort of caching, ranging from the technical to the

regulatory. One example of a technical challenge is the effect of asymmetric paths, when

the request to the server and the response to the client do not follow the same sequence

of router hops.
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has the most recent copy of the page. More generally, there are a set of

cache directives that must be obeyed by all caching mechanisms along the

request/response chain. These directives specify whether or not a docu-

ment can be cached, how long it can be cached, how fresh a document

must be, and so on. We’ll look at the related issue of CDNs—which are

effectively distributed caches—in Section 9.4.3.

9.1.3 Web Services

So far we have focused on interactions between a human and a machine.

For example, a human uses a web browser to interact with a server, and

the interaction proceeds in response to input from the user (e.g., by click-

ing on links). However, there is increasing demand for direct computer-

to-computer interaction. And, just as the applications described above

need protocols, so too do the applications that communicate directly with

each other. We conclude this section by looking at the challenges of build-

ing large numbers of application-to-application protocols and some of

the proposed solutions.

Much of the motivation for enabling direct application-to-application

communication comes from the business world. Historically, interactions

between enterprises—businesses or other organizations—have involved

some manual steps such as filling out an order form or making a phone

call to determine whether some product is in stock. Even within a sin-

gle enterprise it is common to have manual steps between software

systems that cannot interact directly because they were developed inde-

pendently. Increasingly, such manual interactions are being replaced with

direct application-to-application interaction. An ordering application at

enterprise A would send a message to an order fulfillment application at

enterprise B, which would respond immediately indicating whether the

order can be filled. Perhaps, if the order cannot be filled by B, the appli-

cation at A would immediately order from another supplier or solicit bids

from a collection of suppliers.

Here is a simple example of what we are talking about. Suppose you

buy a book at an online retailer like Amazon.com. Once your book has

been shipped, Amazon could send you the tracking number in an email,

and then you could head over to the website for the shipping company—

http://www.fedex.com, perhaps—and track the package. However, you can

also track your package directly from the Amazon.com website. In order

to make this happen, Amazon has to be able to send a query to FedEx,
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in a format that FedEx understands, interpret the result, and display it in

a Web page that perhaps contains other information about your order.

Underlying the user experience of getting all the information about the

order served up at once on the Amazon.com Web page is the fact that

Amazon and FedEx had to have a protocol for exchanging the informa-

tion needed to track packages—call it the Package Tracking Protocol. It

should be clear that there are so many potential protocols of this type

that we’d better have some tools to simplify the task of specifying them

and building them.

Network applications, even those that cross organization boundaries,

are not new—email and web browsing cross such boundaries. What is new

about this problem is the scale. Not scale in the size of the network, but

scale in the number of different kinds of network applications. Both the

protocol specifications and the implementations of those protocols for

traditional applications like electronic mail and file transfer have typically

been developed by a small group of networking experts. To enable the

vast number of potential network applications to be developed quickly,

it was necessary to come up with some technologies that simplify and

automate the task of application protocol design and implementation.

Two architectures have been advocated as solutions to this problem.

Both architectures are called Web Services, taking their name from the

term for the individual applications that offer a remotely accessible ser-

vice to client applications to form network applications.3 The terms used

as informal shorthand to distinguish the two Web Services architectures

are SOAP and REST (as in, “the SOAP vs. REST debate”). We will discuss

the technical meanings of those terms shortly.

The SOAP architecture’s approach to the problem is to make it feasi-

ble, at least in theory, to generate protocols that are customized to each

network application. The key elements of the approach are a framework

for protocol specification, software toolkits for automatically generating

protocol implementations from the specifications, and modular partial

specifications that can be reused across protocols.

The REST architecture’s approach to the problem is to regard indi-

vidual Web Services as World Wide Web resources—identified by URIs

and accessed via HTTP. Essentially, the REST architecture is just the Web

3The name Web Services is unfortunately so generic sounding that many mistakenly

assume that it includes any sort of service associated with the Web.
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architecture. The Web architecture’s strengths include stability and a

demonstrated scalability (in the network-size sense). It could be consid-

ered a weakness that HTTP is not well suited to the usual procedural or

operation-oriented style of invoking a remote service. REST advocates

argue, however, that rich services can nonetheless be exposed using a

more data-oriented or document-passing style for which HTTP is well

suited.

Although both architectures are being actively adopted, they are still

new enough that we don’t yet have much empirical data about their real-

world use. One architecture may come to dominate, or they may merge in

some way, or we may find that one architecture is better suited to certain

kinds of applications while the other architecture is better for others.

Custom Application Protocols (WSDL, SOAP)

The architecture informally referred to as SOAP is based on Web Ser-

vices Description Language (WSDL) and SOAP.4 Both of these standards

are issued by the World Wide Web Consortium (W3C). This is the archi-

tecture that people usually mean when they use the term Web Services

without any preceding qualifier. As these standards are still evolving, our

discussion here is effectively a snapshot.

WSDL and SOAP are frameworks for specifying and implementing

application protocols and transport protocols, respectively. They are gen-

erally used together, although that is not strictly required. WSDL is used

to specify application-specific details such as what operations are sup-

ported, the formats of the application data to invoke or respond to those

operations, and whether an operation involves a response. SOAP’s role

is to make it easy to define a transport protocol with exactly the desired

semantics regarding protocol features such as reliability and security.

Both WSDL and SOAP consist primarily of a protocol specification

language. Both languages are based on XML (Section 7.1.3) with an eye

toward making specifications accessible to software tools such as stub

compilers and directory services. In a world of many custom protocols,

support for automating generation of implementations is crucial to avoid

the effort of manually implementing each protocol. Support software

generally takes the form of toolkits and application servers developed

4Although the name SOAP originated as an acronym, it officially no longer stands for

anything.
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by third-party vendors, which allows developers of individual Web Ser-

vices to focus more on the business problem they need to solve (such as

tracking the package purchased by a customer).

Defining Application Protocols

WSDL has chosen a procedural operation model of application protocols.

An abstract Web Service interface consists of a set of named operations,

each representing a simple interaction between a client and the Web Ser-

vice. An operation is analogous to a remotely callable procedure in an RPC

system. An example from W3C’s WSDL Primer is a hotel reservation Web

Service with two operations, CheckAvailability and MakeReservation.

Each operation specifies a Message Exchange Pattern (MEP) that gives

the sequence in which the messages are to be transmitted, including the

fault messages to be sent when an error disrupts the message flow. Sev-

eral MEPs are predefined, and new custom MEPs can be defined, but it

appears that in practice only two MEPs are being used: In-Only (a single

message from client to service) and In-Out (a request from client and a

corresponding reply from service). These patterns should be very familiar,

and suggest that the costs of supporting MEP flexibility perhaps outweigh

the benefits.

MEPs are templates that have placeholders instead of specific mes-

sage types or formats, so part of the definition of an operation involves

specifying which message formats to map into the placeholders in the

pattern. Message formats are not defined at the bit level that is typical

of protocols we have discussed. They are instead defined as an abstract

data model using XML Schema (Section 7.1.3). XML Schema provides

a set of primitive data types and ways to define compound data types.

Data that conforms to an XML Schema-defined format—its abstract data

model—can be concretely represented using XML, or it can use another

representation, such as the “binary” representation Fast Infoset.

WSDL nicely separates the parts of a protocol that can be specified

abstractly—operations, MEPs, abstract message formats—from the parts

that must be concrete. WSDL’s concrete part specifies an underlying

protocol, how MEPs are mapped onto it, and what bit-level represen-

tation is used for messages on the wire. This part of a specification is

known as a binding, although it is better described as an implementation,

or a mapping onto an implementation. WSDL has predefined bindings

for HTTP and SOAP-based protocols, with parameters that allow the
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protocol designer to fine-tune the mapping onto those protocols. There

is a framework for defining new bindings, but SOAP protocols dominate.

A crucial aspect of how WSDL mitigates the problem of specifying large

numbers of protocols is through reuse of what are essentially specifica-

tion modules. The WSDL specification of a Web Service may be composed

of multiple WSDL documents, and individual WSDL documents may also

be used in other Web Service specifications. This modularity makes it

easier to develop a specification and easier to ensure that, if two specifica-

tions are supposed to have some elements that are identical (for example,

so that they can be supported by the same tool), then those elements are

indeed identical. This modularity, together with WSDL’s defaulting rules,

also helps keep specifications from becoming overwhelmingly verbose

for human protocol designers.

WSDL modularity should be familiar to anyone who has developed

moderately large pieces of software. A WSDL document need not be a

complete specification; it could, for example, define a single message for-

mat. The partial specifications are uniquely identified using XML Name-

spaces (Section 7.1.3); each WSDL document specifies the URI of a target

namespace, and any new definitions in the document are named in the

context of that namespace. One WSDL document can incorporate com-

ponents of another by including the second document if both share the

same target namespace or importing it if the target namespaces differ.

Defining Transport Protocols

Although SOAP is sometimes called a protocol, it is better thought of as a

framework for defining protocols. As the SOAP 1.2 specification explains,

“SOAP provides a simple messaging framework whose core functional-

ity is concerned with providing extensibility.” SOAP uses many of the

same strategies as WSDL, including message formats defined using XML

Schema, bindings to underlying protocols, Message Exchange Patterns,

and reusable specification elements identified using XML namespaces.

SOAP is used to define transport protocols with exactly the features

needed to support a particular application protocol. SOAP aims to make

it feasible to define many such protocols by using reusable components.

Each component captures the header information and logic that go into

implementing a particular feature. To define a protocol with a certain set

of features, just compose the corresponding components. Let’s look more

closely at this aspect of SOAP.
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SOAP 1.2 introduced a feature abstraction, which the specification

describes thus: A SOAP feature is an extension of the SOAP messaging

framework. Although SOAP poses no constraints on the potential scope

of such features, example features may include “reliability,” “security,”

“correlation,” “routing,” and message exchange patterns (MEPs) such as

request/response, one-way, and peer-to-peer conversations. A SOAP feature

specification must include:

n A URI that identifies the feature

n The state information and processing, abstractly described, that is

required at each SOAP node to implement the feature

n The information to be relayed to the next node

n (If the feature is a MEP) the life cycle and temporal/causal

relationships of the messages exchanged—for example, responses

follow requests and are sent to the originator of the request

Note that this formalization of the concept of a protocol feature is rather

low level; it is almost a design.

Given a set of features, there are two strategies for defining a SOAP pro-

tocol that will implement them. One is by layering: binding SOAP to an

underlying protocol in such a way as to derive the features. For example,

we could obtain a request/response protocol by binding SOAP to HTTP,

with a SOAP request in an HTTP request and a SOAP reply in an HTTP

response. Because this is such a common example, it happens that SOAP

has a predefined binding to HTTP; new bindings may be defined using

the SOAP Protocol Binding Framework.

The second and more flexible way to implement features involves

header blocks. A SOAP message consists of an Envelope, which con-

tains a Header that contains header blocks, and a Body, which contains

the payload destined for the ultimate receiver. This message structure is

illustrated in Figure 9.6.

It should be a familiar notion by now that certain header information

corresponds to particular features. A digital signature is used to imple-

ment authentication, a sequence number is used for reliability, and a

checksum is used to detect message corruption. A SOAP header block

is intended to encapsulate the header information that corresponds to

a particular feature. The correspondence is not always one-to-one since

multiple header blocks could be involved in a single feature, or a single



PETERSON-AND-DAVIE 15-ch09-696-800-9780123850591 2011/11/1 22:47 Page 724 #29

724 CHAPTER 9 Applications

Envelope

Header

Body

Header block

Header block

n FIGURE 9.6 SOAP message structure.

header block could be used in multiple features. A SOAP module is a

specification of the syntax and the semantics of one or more header

blocks. Each module is intended to provide one or more features and

must declare the features it implements.

The goal behind SOAP modules is to be able to compose a proto-

col with a set of features by simply including each of the corresponding

module specifications. If your protocol is required to have at-most-once

semantics and authentication, include the corresponding modules in

your specification. This represents a novel approach to modularizing

protocol services, an alternative to the protocol layering we have seen

throughout this book. It is bit like flattening a series of protocol layers into

a single protocol, but in a structured way. It remains to be seen how well

SOAP features and modules, introduced in version 1.2 of SOAP, will work

in practice. The main weakness of this scheme is that modules may well

interfere with each other. A module specification is required to specify any

known interactions with other SOAP modules, but clearly that doesn’t do

much to alleviate the problem. On the other hand, a core set of features

and modules that provides the most important properties may be small

enough to be well known and well understood.

StandardizingWeb Services Protocols

As we’ve said, WSDL and SOAP aren’t protocols; they are standards for

specifying protocols. For different enterprises to implement Web Services

that interoperate with each other, it is not enough to agree to use WSDL

and SOAP to define their protocols; they must agree on—standardize—

specific protocols. For example, you could imagine that online retailers
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and shipping companies might like to standardize a protocol by which

they exchange information, along the lines of the simple package track-

ing example at the start of this section. This standardization is crucial for

tool support as well as interoperability. And, yet, different network appli-

cations in this architecture must necessarily differ in at least the message

formats and operations they use.

This tension between standardization and customization is tackled by

establishing partial standards called profiles. A profile is a set of guide-

lines that narrow or constrain choices available in WSDL, SOAP, and other

standards that may be referenced in defining a protocol. They may at the

same time resolve ambiguities or gaps in those standards. In practice, a

profile often formalizes an emerging de facto standard.

The broadest and most widely adopted profile is known as the WS-I

Basic Profile. It was proposed by the Web Services Interoperability Orga-

nization (WS-I), an industry consortium, while WSDL and SOAP are

specified by the World Wide Web Consortium (W3C). The Basic Profile

resolves some of the most basic choices faced in defining a Web Service.

Most notably it requires that WSDL be bound exclusively to SOAP and

SOAP be bound exclusively to HTTP and use the HTTP POST method. It

also specifies which versions of WSDL and SOAP must be used.

The WS-I Basic Security Profile adds security constraints to the Basic

Profile by specifying how the SSL/TLS layer (Section 8.4.3) is to be used

and requiring conformance to WS-Security (Web Services Security). WS-

Security specifies how to use various existing techniques such as X.509

public key certificates (Section 8.2.1) and Kerberos (Section 8.3.3) to

provide security features in SOAP protocols.

WS-Security is just the first of a growing suite of SOAP-level stan-

dards established by the industry consortium OASIS (Organization

for the Advancement of Structured Information Standards). The stan-

dards known collectively as WS-* include WS-Reliability, WS-Reliable-

Messaging, WS-Coordination, and WS-AtomicTransaction.

A Generic Application Protocol (REST)

The WSDL/SOAP Web Services architecture is based on the assumption

that the best way to integrate applications across networks is via protocols

that are customized to each application. That architecture is designed to

make it practical to specify and implement all those protocols. In contrast,

the REST Web Services architecture is based on the assumption that the

best way to integrate applications across networks is by re-applying the
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model underlying the World Wide Web architecture (Section 9.1.2). This

model, articulated by Web architect Roy Fielding, is known as REpresenta-

tional State Transfer (REST). There is no need for a new REST architecture

for Web Services—the existing Web architecture is sufficient, although a

few extensions are probably necessary. In the Web architecture, individual

Web Services are regarded as resources identified by URIs and accessed

via HTTP—a single generic application protocol with a single generic

addressing scheme.

Where WSDL has user-defined operations, REST uses the small set of

available HTTP methods, such as GET and POST (see Table 9.1). So how

can these simple methods provide an interface to a rich Web Service? By

employing the REST model, in which the complexity is shifted from the

protocol to the payload. The payload is a representation of the abstract

state of a resource. For example, a GET could return a representation of

the current state of the resource, and a POST could send a representation

of a desired state of the resource.

The representation of a resource state is abstract; it need not resem-

ble how the resource is actually implemented by a particular Web Service

instance. It is not necessary to transmit a complete resource state in

each message. The size of messages can be reduced by transmitting

just the parts of a state that are of interest (e.g., just the parts that are

being modified). And, because Web Services share a single protocol and

address space with other web resources, parts of states can be passed by

reference—by URI—even when they are other Web Services.

This approach is best summarized as a data-oriented or document-

passing style, as opposed to a procedural style. Defining an application

protocol in this architecture consists of defining the document struc-

ture (i.e., the state representation). XML and the lighter-weight JavaScript

Object Notation (JSON) are the most frequently used presentation lan-

guages (Section 7.1) for this state. Interoperability depends on agreement,

between a Web Service and its client, on the state representation. Of

course, the same is true in the SOAP architecture; a Web Service and its

client have to be in agreement on payload format. The difference is that

in the SOAP architecture interoperability additionally depends on agree-

ment on the protocol; in the REST architecture, the protocol is always

HTTP, so that source of interoperability problems is eliminated.

One of the selling features of REST is that it leverages the infrastructure

that has been deployed to support the Web. For example, Web proxies
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can enforce security or cache information. Existing content distribution

networks (CDNs) can be used to support RESTful applications.

In contrast with WSDL/SOAP, the Web has had time for standards to

stabilize and to demonstrate that it scales very well. It also comes with

some security in the form of Secure Socket Layer (SSL)/Transport Layer

Security (TLS). The Web and REST may also have an advantage in evolv-

ability. Although the WSDL and SOAP frameworks are highly flexible with

regard to what new features and bindings can go into the definition

of a protocol, that flexibility is irrelevant once the protocol is defined.

Standardized protocols such as HTTP are designed with a provision for

being extended in a backward-compatible way. HTTP’s own extensibil-

ity takes the form of headers, new methods, and new content types.

Protocol designers using WSDL/SOAP need to design such extensibil-

ity into each of their custom protocols. Of course, the designers of state

representations in a REST architecture also have to design for evolvability.

An area where WSDL/SOAP may have an advantage is in adapting or

wrapping previously written, “legacy” applications to conform to Web

Services. This is an important point since most Web Services will be

based on legacy applications for the near future at least. These appli-

cations usually have a procedural interface that maps more easily into

WSDL’s operations than REST states. The REST versus WSDL/SOAP com-

petition may very well hinge on how easy or difficult it turns out to be

to devise REST-style interfaces for individual Web Services. We may find

that some Web Services are better served by WSDL/SOAP and others

by REST.

The online retailer Amazon.com, as it happens, was an early adopter

(2002) of Web Services. Interestingly, Amazon made its systems publicly

accessible via both of the Web Services architectures, and according to

some reports a substantial majority of developers use the REST interface.

LAB 14:
Applications

LAB 15:
Web Caching

and Data
Compression

Of course, this is just one data point and may well reflect factors specific

to Amazon.

9.2 MULTIMEDIA APPLICATIONS

Just like the traditional applications described earlier in this chapter, mul-

timedia applications such as telephony and videoconferencing need their

own protocols. Much of the initial experience in designing protocols for

multimedia applications came from the MBone tools—applications such
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as vat and vic that were developed for use on the MBone, an overlay

network that supports IP multicast to enable multiparty conferencing.

(More on overlay networks including the MBone in the next section.)

Initially, each application implemented its own protocol (or protocols),

but it became apparent that many multimedia applications have com-

mon requirements. This ultimately led to the development of a number

of general-purpose protocols for use by multimedia applications.

We have already seen a number of protocols that multimedia appli-

cations use. The Real-Time Transport Protocol (RTP; described in

Section 5.4) provides many of the functions that are common to multi-

media applications such as conveying timing information and identifying

the coding schemes and media types of an application.

The Resource Reservation Protocol (RSVP; see Section 6.5.2) can be

used to request the allocation of resources in the network so that the

desired quality of service (QoS) can be provided to an application. We will

see how resource allocation interacts with other aspects of multimedia

applications in Section 9.2.2.

In addition to these protocols for multimedia transport and resource

allocation, many multimedia applications also need a signalling or ses-

sion control protocol. For example, suppose that we wanted to be able to

make telephone calls across the Internet (Voice over IP, or VoIP). We would

need some mechanism to notify the intended recipient of such a call that

we wanted to talk to her, such as by sending a message to some multi-

media device that would cause it to make a ringing sound. We would also

like to be able to support features like call forwarding, three-way calling,

etc. The Session Initiation Protocol (SIP) and H.323 are examples of pro-

tocols that address the issues of session control; we begin our discussion

of multimedia applications by examining these protocols.

9.2.1 Session Control and Call Control (SDP, SIP, H.323)

To understand some of the issues of session control, consider the follow-

ing problem. Suppose you want to hold a videoconference at a certain

time and make it available to a wide number of participants. Perhaps you

have decided to encode the video stream using the MPEG-2 standard, to

use the multicast IP address 224.1.1.1 for transmission of the data, and to

send it using RTP over UDP port number 4000. How would you make all

that information available to the intended participants? One way would
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be to put all that information in an email and send it out, but ideally there

should be a standard format and protocol for disseminating this sort of

information. The IETF has defined protocols for just this purpose. The

protocols that have been defined include

n Session Description Protocol (SDP)

n Session Announcement Protocol (SAP)

n Session Initiation Protocol (SIP)

n Simple Conference Control Protocol (SCCP)

You might think that this is a lot of protocols for a seemingly simple

task, but there are many aspects of the problem and several different sit-

uations in which it must be addressed. For example, there is a difference

between announcing the fact that a certain conference session is going

to be made available on the MBone (which would be done using SDP

and SAP) and trying to make an Internet phone call to a certain user at

a particular time (which could be done using SDP and SIP). In the former

case, you could consider your job done once you have sent all the session

information in a standard format to a well-known multicast address. In

the latter, you would need to locate one or more users, get a message to

them announcing your desire to talk (analogous to ringing their phone),

and perhaps negotiate a suitable audio encoding among all parties. We

will look first at SDP, which is common to many applications, then at

SIP, which is widely used for a number of interactive applications such

as Internet telephony.

Session Description Protocol (SDP)

The Session Description Protocol (SDP) is a rather general protocol that

can be used in a variety of situations and is typically used in conjunc-

tion with one or more other protocols (e.g., SIP). It conveys the following

information:

n The name and purpose of the session

n Start and end times for the session

n The media types (e.g., audio, video) that comprise the session

n Detailed information required to receive the session (e.g., the

multicast address to which data will be sent, the transport protocol

to be used, the port numbers, the encoding scheme)
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SDP provides this information formatted in ASCII using a sequence of

lines of text, each of the form “<type>=<value>.” An example of an SDP

message will illustrate the main points.

v=0

o=larry 2890844526 2890842807 IN IP4 128.112.136.10

s=Networking 101

i=A class on computer networking

u=http://www.cs.princeton.edu/

e=larry@cs.princeton.edu

c=IN IP4 224.2.17.12/127

t=2873397496 2873404696

m=audio 49170 RTP/AVP 0

m=video 51372 RTP/AVP 31

m=application 32416 udp wb

Note that SDP, like HTML, is fairly easy for a human to read but has

strict formatting rules that make it possible for machines to interpret the

data unambiguously. For example, the SDP specification defines all the

possible information types that are allowed to appear, the order in which

they must appear, and the format and reserved words for every type that

is defined.

The first thing to notice is that each information type is identified by a

single character. For example, the line v=0 tells us that “version” has the

value zero; that is, this message is formatted according to version zero

of SDP. The next line provides the “origin” of the session which contains

enough information to uniquely identify the session. larry is a username

of the session creator, and 128.112.136.10 is the IP address of his com-

puter. The number following larry is a session identifier that is chosen to

be unique to that machine. This is followed by a “version” number for

the SDP announcement; if the session information was updated by a later

message, the version number would be increased.

The next three lines (s, i, and u) provide the session name, a session

description, and a session Uniform Resource Identifier (URI, as described

in Section 9.1.2)—information that would be helpful to a user in deciding

whether to participate in this session. Such information could be dis-

played in the user interface of a session directory tool that shows current

and upcoming events that have been advertised using SDP. The next line

(e=. . . ) contains an email address of a person to contact regarding the
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n FIGURE 9.7 A session directory tool displays information extracted from SDP messages.

session. Figure 9.7 shows a screen shot of a (somewhat archaic) session

directory tool called sdr along with the descriptions of several sessions

that had been announced at the time the picture was taken.

Next we get to the technical details that would enable an application

program to participate in the session. The line beginning c=. . . provides

the IP multicast address to which data for this session will be sent; a user

would need to join this multicast group to receive the session. Next we

see the start and end times for the session (encoded as integers according

to the Network Time Protocol). Finally, we get to the information about

the media for this session. This session has three media types available—

audio, video, and a shared whiteboard application known as “wb.” For

each media type there is one line of information formatted as follows:

m=<media> <port> <transport> <format>

The media types are self-explanatory, and the port numbers in each

case are UDP ports. When we look at the “transport” field, we can see

that the wb application runs directly over UDP, while the audio and video

are transported using “RTP/AVP.” This means that they run over RTP and
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use the application profile (as defined in Section 5.4) known as AVP. That

application profile defines a number of different encoding schemes for

audio and video; we can see in this case that the audio is using encoding 0

(which is an encoding using an 8-kHz sampling rate and 8 bits per sample)

and the video is using encoding 31, which represents the H.261 encoding

scheme. These “magic numbers” for the encoding schemes are defined

in the RFC that defines the AVP profile; it is also possible to describe

nonstandard coding schemes in SDP.

Finally, we see a description of the “wb” media type. All the encoding

information for this data is specific to the wb application, and so it is suffi-

cient just to provide the name of the application in the “format” field. This

is analogous to putting application/wb in a MIME message.

Now that we know how to describe sessions, we can look at how they

can be initiated. One way in which SDP is used is to announce multi-

media conferences, by sending SDP messages to a well-known multicast

address. The session directory tool shown in Figure 9.7 would function

by joining that multicast group and displaying information that it gleans

from received SDP messages. SDP is also used in the delivery of enter-

tainment video of IP (often called IPTV) to provide information about the

video content on each TV channel.

SDP also plays an important role in conjunction with the Session Initi-

ation Protocol (SIP). With the widespread adoption of Voice over IP (i.e.,

the support of telephony-like applications over IP networks) and IP-based

video conferencing, SIP is now one of the more important members of the

Internet protocol suite.

SIP

SIP is an application layer protocol that bears a certain resemblance to

HTTP, being based on a similar request/response model. However, it is

designed with rather different sorts of applications in mind and thus pro-

vides quite different capabilities than HTTP. The capabilities provided by

SIP can be grouped into five categories:

n User location—Determining the correct device with which to

communicate to reach a particular user

n User availability—Determining if the user is willing or able to take

part in a particular communication session

n User capabilities—Determining such items as the choice of media

and coding scheme to use
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n Session setup—Establishing session parameters such as port

numbers to be used by the communicating parties

n Session management—A range of functions including transferring

sessions (e.g., to implement “call forwarding”) and modifying

session parameters

Most of these functions are easy enough to understand, but the issue

of location bears some further discussion. One important difference

between SIP and, say, HTTP, is that SIP is primarily used for human-to-

human communication. Thus, it is important to be able to locate individ-

ual users, not just machines. And, unlike email, it’s not good enough just

to locate a server that the user will be checking on at some later date and

dump the message there—we need to know where the user is right now if

we want to be able to communicate with him in real time. This is further

complicated by the fact that a user might choose to communicate using

a range of different devices, such as using his desktop PC when he’s in

the office and using a handheld device when traveling. Multiple devices

might be active at the same time and might have widely different capabil-

ities (e.g., an alphanumeric pager and a PC-based video “phone”). Ideally,

it should be possible for other users to be able to locate and communicate

with the appropriate device at any time. Furthermore, the user must be

able to have control over when, where, and from whom he receives calls.

To enable a user to exercise the appropriate level of control over his

calls, SIP introduces the notion of a proxy. A SIP proxy can be thought of as

a point of contact for a user to which initial requests for communication

with him are sent. Proxies also perform functions on behalf of callers. We

can see how proxies work best through an example.

Consider the two users in Figure 9.8. The first thing to notice is that

each user has a name in the format user@domain, very much like an email

princeton.edu

proxy

larry@princeton.edubruce@cisco.com

bsd-pc.cisco.com llp-ph.cs.princeton.edu

cisco.com

proxy

n FIGURE 9.8 Establishing communication through SIP proxies.
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address. When user Bruce wants to initiate a session with Larry, he sends

his initial SIP message to the local proxy for his domain, cisco.com. Among

other things, this initial message contains a SIP URI—these are a form of

uniform resource identifier which look like this:

SIP:larry@princeton.edu

A SIP URI provides complete identification of a user, but (unlike a URL)

does not provide his location, since that may change over time. We will see

shortly how the location of a user can be determined.

Upon receiving the initial message from Bruce, the cisco.com proxy

looks at the SIP URI and deduces that this message should be sent to

the princeton.edu proxy. For now, we assume that the princeton.edu proxy

has access to some database that enables it to obtain a mapping from

the name larry@princeton.edu to the IP address of one or more devices at

which Larry currently wishes to receive messages. The proxy can therefore

forward the message on to Larry’s chosen device(s). Sending the message

to more than one device is called forking and may be done either in par-

allel or in series (e.g., send it to his mobile phone if he doesn’t answer the

phone at his desk).

The initial message from Bruce to Larry is likely to be a SIP invite

message, which looks something like the following:

INVITE sip:larry@princeton.edu SIP/2.0

Via: SIP/2.0/UDP bsd-pc.cisco.com;branch=z9hG4bK433yte4

To: Larry <sip:larry@princeton.edu>

From: Bruce <sip:bruce@cisco.com>;tag=55123

Call-ID: xy745jj210re3@bsd-pc.cisco.com

CSeq: 271828 INVITE

Contact: <sip:bruce@bsd-pc.cisco.com>

Content-Type: application/sdp

Content-Length: 142

The first line identifies the type of function to be performed (invite);

the resource on which to perform it, the called party (sip:larry@

princeton.edu); and the protocol version (2.0). The subsequent header

lines probably look somewhat familiar because of their resemblance to

the header lines in an email message. SIP defines a large number of

header fields, only some of which we describe here. Note that the Via:

header in this example identifies the device from which this message

originated. The Content-Type: and Content-Length: headers describe the
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contents of the message following the header, just as in a MIME-encoded

email message. In this case, the content is an SDP message. That mes-

sage would describe such things as the type of media (audio, video, etc.)

that Bruce would like to exchange with Larry and other properties of the

session such as codec types that he supports. Note that the Content-Type:

field in SIP provides the capability to use any protocol for this purpose,

although SDP is the most common.

Returning to the example, when the invite message arrives at the

cisco.com proxy, not only does the proxy forward the message on toward

princeton.edu, but it also responds to the sender of the invite. Just as in

HTTP, all responses have a response code, and the organization of codes

is similar to that for HTTP, as shown in Table 9.2. In Figure 9.9 we can see

a sequence of SIP messages and responses.

The first response message in this figure is the provisional response

100 trying, which indicates that the message was received without error

by the caller’s proxy. Once the invite is delivered to Larry’s phone, it

alerts Larry and responds with a 180 ringing message. The arrival of this

cisco.com

proxy

princeton.edu

proxybsd-pc.cisco.com llp-ph.cs.princeton.edu

invite

180 ringing

200 OK

invite

100 trying

180 ringing

200 OK

invite

100 trying

180 ringing

200 OK

ACK

200 OK

BYE

Media

n FIGURE 9.9 Message flow for a basic SIP session.



PETERSON-AND-DAVIE 15-ch09-696-800-9780123850591 2011/11/1 22:47 Page 736 #41

736 CHAPTER 9 Applications

message at Bruce’s computer is a sign that it can generate a “ringtone.”

Assuming Larry is willing and able to communicate with Bruce, he could

pick up his phone, causing the message 200 OK to be sent. Bruce’s com-

puter responds with an ACK, and media (e.g., an RTP-encapsulated audio

stream) can now begin to flow between the two parties. Note that at this

point the parties know each others’ addresses, so the ACK can be sent

directly, bypassing the proxies. The proxies are now no longer involved in

the call. Note that the media will therefore typically take a different path

through the network than the original signalling messages. Furthermore,

even if one or both of the proxies were to crash at this point, the call could

continue on normally. Finally, when one party wishes to end the session,

it sends a BYE message, which elicits a 200 OK response under normal

circumstances.

There are a few details that we have glossed over. One is the negotiation

of session characteristics. Perhaps Bruce would have liked to communi-

cate using both audio and video but Larry’s phone only supports audio.

Thus, Larry’s phone would send an SDP message in its 200 OK describ-

ing the properties of the session that will be acceptable to Larry and the

device, considering the options that were proposed in Bruce’s invite. In

this way, mutually acceptable session parameters are agreed to before the

media flow starts.

The other big issue we have glossed over is that of locating the cor-

rect device for Larry. First, Bruce’s computer had to send its invite to the

cisco.com proxy. This could have been a configured piece of informa-

tion in the computer, or it could have been learned by DHCP. Then the

cisco.com proxy had to find the princeton.edu proxy. This could be done

using a special sort of DNS lookup that would return the IP address of the

SIP proxy for the princeton.edu domain. (We’ll discuss how DNS can do

this in Section 9.3.1.) Finally, the princeton.edu proxy had to find a device

on which Larry could be contacted. Typically, a proxy server has access to

a location database that can be populated in several ways. Manual config-

uration is one option, but a more flexible option is to use the registration

capabilities of SIP.

A user can register with a location service by sending a SIP register

message to the “registrar” for his domain. This message creates a bind-

ing between an “address of record” and a “contact address.” An “address

of record” is likely to be a SIP URI that is the well-known address for

the user (e.g., sip:larry@princeton.edu) and the “contact address” will be
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the address at which the user can currently be found (e.g., sip:larry@llp-

ph.cs.princeton.edu). This is exactly the binding that was needed by the

princeton.edu proxy in our example.

Note that a user may register at several locations and that multiple

users may register at a single device. For example, one can imagine a

group of people walking into a conference room that is equipped with

an IP phone and all of them registering on it so that they can receive calls

on that phone.

SIP is a very rich and flexible protocol that can support a wide range

of complex calling scenarios as well as applications that have little or

nothing to do with telephony. For example, SIP supports operations

that enable a call to be routed to a “music-on-hold” server or a voice-

mail server. It is also easy to see how it could be used for applications

like instant messaging, and standardization of SIP extensions for such

purposes is ongoing at the time of writing.

H.323

The International Telecommunication Union (ITU) has also been very

active in the call control area, which is not surprising given its relevance to

telephony, the traditional realm of that body. Fortunately, there has been

considerable coordination between the IETF and the ITU in this instance,

so that the various protocols are somewhat interoperable. The major ITU

recommendation for multimedia communication over packet networks

is known as H.323, which ties together many other recommendations,

including H.225 for call control. The full set of recommendations covered

by H.323 runs to many hundreds of pages, and the protocol is known for

its complexity, so it is only possible to give a brief overview of it here.

H.323 is popular as a protocol for Internet telephony, including video

calls, and we consider that class of application here. A device that origi-

nates or terminates calls is known as an H.323 terminal; this might be

a workstation running an Internet telephony application, or it might be

a specially designed “appliance”—a telephone-like device with network-

ing software and an Ethernet port, for example. H.323 terminals can talk

to each other directly, but the calls are frequently mediated by a device

known as a gatekeeper. Gatekeepers perform a number of functions such

as translating among the various address formats used for phone calls

and controlling how many calls can be placed at a given time to limit

the bandwidth used by the H.323 applications. H.323 also includes the
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H.323

terminal

H.323

gatekeeper

H.323

terminal

H.323

gateway

Conventional telephone

network

n FIGURE 9.10 Devices in an H.323 network.

concept of a gateway, which connects the H.323 network to other types

of networks. The most common use of a gateway is to connect an H.323

network to the public switched telephone network (PSTN) as illustrated

in Figure 9.10. This enables a user running an H.323 application on a

computer to talk to a person using a conventional phone on the public

telephone network. One useful function performed by the gatekeeper is to

help a terminal find a gateway, perhaps choosing among several options

to find one that is relatively close to the ultimate destination of the call.

This is clearly useful in a world where conventional phones greatly out-

number PC-based phones. When an H.323 terminal makes a call to an

endpoint that is a conventional phone, the gateway becomes the effective

endpoint for the H.323 call and is responsible for performing the appro-

priate translation of both signalling information and the media stream

that need to be carried over the telephone network.

An important part of H.323 is the H.245 protocol, which is used to

negotiate the properties of the call, somewhat analogously to the use of

SDP described above. H.245 messages might list a number of different

audio codec standards that it can support; the far endpoint of the call

would reply with a list of its own supported codecs, and the two ends

could pick a coding standard that they can both live with. H.245 can also

be used to signal the UDP port numbers that will be used by RTP and Real-

Time Control Protocol (RTCP) for the media stream (or streams—a call

might include both audio and video, for example) for this call. Once this

is accomplished, the call can proceed, with RTP being used to transport

the media streams and RTCP carrying the relevant control information.
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9.2.2 Resource Allocation for Multimedia Applications

As we have just seen, session control protocols like SIP and H.323 can

be used to initiate and control communication in multimedia applica-

tions, while RTP provides transport-level functions for the data streams

of the applications. A final piece of the puzzle in getting multimedia

applications to work is making sure that suitable resources are allocated

inside the network to ensure that the quality of service needs of the

application are met. We presented a number of methods for resource allo-

cation in Chapter 6. The motivation for developing these technologies

was largely for the support of multimedia applications. So how do appli-

cations take advantage of the underlying resource allocation capabilities

of the network?

It is worth noting that many multimedia applications run successfully

over “best-effort” networks, such as the public Internet. The wide array of

commercial VOIP services (such as Skype) are testimony to the fact that

you only have to worry about resource allocation when resources are not

abundant—and in many parts of today’s Internet, resource abundance is

the norm.

A protocol like RTCP (Section 5.4) can help applications in best-effort

networks, by giving the application detailed information about the quality

of service that is being delivered by the network. Recall that RTCP car-

ries information about the loss rate and delay characteristics between

participants in a multimedia application. An application can use this

information to change its coding scheme—changing to a lower bitrate

codec, for example, when bandwidth is scarce. Note that, while it might

be tempting to change to a codec that sends additional, redundant infor-

mation when loss rates are high, this is frowned upon; it is analogous

to increasing the window size of TCP in the presence of loss, the exact

opposite of what is required to avoid congestion collapse.

As discussed in Section 6.5.3, Differentiated Services (DiffServ) can be

used to provide fairly basic and scalable resource allocation to applica-

tions. A multimedia application can set the differentiated services code

point (DSCP) in the IP header of the packets that it generates in an

effort to ensure that both the media and control packets receive appro-

priate quality of service. For example, it is common to mark voice media

packets as “EF” (expedited forwarding) to cause them to be placed in

a low-latency or priority queue in routers along the path, while the

call signalling (e.g., SIP) packets are often marked with some sort of
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IP phone

Customer

router

ISP

router
Public

Internet

n FIGURE 9.11 Differentiated Services applied to a VOIP application. DiffServ queueing is applied only on the upstream

link from customer router to ISP.

“AF” (assured forwarding) to enable them to be queued separately from

best-effort traffic and thus reduce their risk of loss.

Of course, it only makes sense to mark the packets inside the sending

host or appliance if network devices such as routers pay attention to the

DSCP. In general, routers in the public Internet ignore the DSCP, providing

best-effort service to all packets. However, enterprise or corporate net-

works have the ability to use DiffServ for their internal multimedia traffic,

and frequently do so. Also, even residential users of the Internet can often

improve the quality of VOIP or other multimedia applications just by

using DiffServ on the outbound direction of their Internet connections,

as illustrated in Figure 9.11. This is effective because of the asymmetry

of many broadband Internet connections: If the outbound link is sub-

stantially slower (i.e., more resource constrained) than the inbound, then

resource allocation using DiffServ on that link may be enough to make all

the difference in quality for latency- and loss-sensitive applications.

While DiffServ is appealing for its simplicity, it is clear that it can-

not meet the needs of applications under all conditions. For example,

suppose the upstream bandwidth in Figure 9.11 is only 100 kbps, and the

customer attempts to place two VOIP calls, each with a 64-kbps codec.

Clearly the upstream link is now more than 100% loaded, which will lead

to large queueing delays and lost packets. No amount of clever queueing

in the customer’s router can fix that.
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The characteristics of many multimedia applications are such that,

rather than try to squeeze too many calls into a too-narrow pipe, it would

be better to block one call while allowing another to proceed. That is,

it is better to have one person carrying on a conversation successfully

while another hears a busy signal than to have both callers experiencing

unacceptable audio quality at the same time. We sometimes refer to such

applications as having a steep utility curve, meaning that the utility (use-

fulness) of the application drops rapidly as the quality of service provided

by the network degrades. Multimedia applications often have this pro-

perty, whereas many traditional applications do not. Email, for example,

continues to work quite well even if delays run into the hours.

Applications with steep utility curves are often well suited to some form

of admission control. If you cannot be sure that sufficient resources will

always be available to support the offered load of the applications, then

admission control provides a way to say “no” to some applications while

allowing others to get the resources they need.

We saw one way to do admission control using RSVP in Section 6.5.2,

and we will return to that shortly, but multimedia applications that use

session control protocols provide some other admission control options.

The key point to observe here is that session control protocols like SIP or

H.323 often involve some sort of message exchange between an endpoint

and another entity (SIP proxy or H.323 gatekeeper) at the beginning of a

call or session. This can provide a handy means to say “no” to a new call

for which sufficient resources are not available.

As an example, consider the network in Figure 9.12. Suppose the wide

area link from the branch office to the head office has enough bandwidth

to accommodate three VOIP calls simultaneously using 64-kbps codecs.

Each phone already needs to communicate with the local SIP proxy or

H.323 gatekeeper when it begins to place a call, so it is easy enough for the

proxy/gatekeeper to send back a message that tells the IP phone to play a

busy signal if that link is already fully loaded. The proxy or gatekeeper can

even deal with the possibility that a particular IP phone might be making

multiple calls at the same time and that different codec speeds might be

used. However, this scheme will work only if no other device can overload

the link without first talking to the gatekeeper or proxy. DiffServ queueing

can be used to ensure that, for example, a PC engaged in a file transfer

doesn’t interfere with the VOIP calls. But, suppose some VOIP applica-

tion that doesn’t first talk to the gatekeeper or proxy is enabled in the
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n FIGURE 9.12 Admission control using session control protocol.

remote office. Such an application, if it can get its packets marked appro-

priately and in the same queue as the existing VOIP traffic, can clearly

drive the link to the point of overload with no feedback from the proxy or

gatekeeper.

Another problem with the approach just described is that it depends

on the gatekeeper or proxy having knowledge of the path that each appli-

cation will use. In the simple topology of Figure 9.12 this isn’t a big issue,

but in more complex networks it can quickly become unmanageable.

We only need to imagine the case where the remote office has two dif-

ferent connections to the outside world to see that we are asking the

proxy or gatekeeper to understand not just SIP or H.323 but also routing,

link failures, and current network conditions. This can quickly become

unmanageable.

We refer to the sort of admission control just described as off-path, in

the sense that the device making admission control decisions does not

sit on the data path where resources need to be allocated. The obvious

alternative is on-path admission control, and the standard example of

a protocol that does on-path admission control in IP networks is the

Resource Reservation Protocol (RSVP). We saw in Section 6.5.2 how RSVP

can be used to ensure that sufficient resources are allocated along a path,



PETERSON-AND-DAVIE 15-ch09-696-800-9780123850591 2011/11/1 22:47 Page 743 #48

9.2 Multimedia applications 743

and it is straightforward to use RSVP in applications like those described

in this section. The one detail that still needs to be filled in is how the

admission control protocol interacts with the session control protocol.

Coordinating the actions of an admission control (or resource reserva-

tion) protocol and a session control protocol is not rocket science, but it

does require some attention to details. As an example, consider a simple

telephone call between two parties. Before you can make a reservation,

you need to know how much bandwidth the call is going to use, which

means you need to know what codecs are to be used. That implies you

need to do some of the session control first, to exchange information

about the codecs supported by the two phones. However, you can’t do

all the session control first, because you wouldn’t want the phone to ring

before the admission control decision had been made, in case admission

control failed. Figure 9.13 illustrates this situation where SIP is used for

session control and RSVP is used to make the admission control decision

(successfully in this case).

INVITE SDP1

183 Session Progress SDP2

PRACK

200 OK

PATH Messages

RESV Messages

UPDATE SDP3

200 OK (UPDATE) SDP4

180 Ringing

PRACK

200 OK (PRACK)

n FIGURE 9.13 Co-ordination of SIP signalling and resource reservation.
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The main thing to notice here is the interleaving of session control and

resource allocation tasks. Solid lines represent SIP messages, dashed lines

represent RSVP messages. Note that SIP messages are transmitted direc-

tion from phone to phone in this example (i.e., we have not shown any SIP

proxies), whereas the RSVP messages are also processed by the routers in

the middle as the check for sufficient resources to admit the call.

We being with an initial exchange of codec information in the first two

SIP messages (recall that SDP is used to list available codecs, among other

things). PRACK is a “provisional acknowledgment.” Once these messages

have been exchanged, RSVP PATH messages, which contain a description

of the amount of resources that will be required, can be sent as the first

step in reserving resources in both directions of the call. Next, RESV mes-

sages can be sent back to actually reserve the resources. Once a RESV

is received by the initiating phone, it can send an updated SDP message

reporting the fact that resources have been reserved in one direction.

When the called phone has received both that message and the RESV

from the other phone, it can start to ring and tell the other phone that

resources are now reserved in both directions (with the SDP message) and

also notify the calling phone that it is ringing. From here on, normal SIP

signalling and media flow, similar to that shown in Figure 9.9, proceeds.

Again we see how building applications requires us to understand

the interaction between different building blocks (SIP and RSVP, in this

case). The designers of SIP actually made some changes to the protocol

to enable this interleaving of functions between protocols with different

jobs, hence our repeated emphasis in this book on focusing on complete

systems rather than just looking at one layer or component in isolation

from the other parts of the system.

9.3 INFRASTRUCTURE SERVICES

There are some protocols that are essential to the smooth running of

the Internet but that don’t fit neatly into the strictly layered model. One

of these is the Domain Name System (DNS)—not an application that

users normally invoke explicitly, but rather a service that almost all other

applications depend upon. This is because the name service is used

to translate host names into host addresses; the existence of such an

application allows the users of other applications to refer to remote hosts
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by name rather than by address. In other words, a name service is usually

used by other applications, rather than by humans.

A second critical function is network management, which although not

so familiar to the average user, is the operation performed most often by

system administrators. Network management is widely considered one of

the hard problems of networking and continues to be the focus of much

research. We’ll look at some of the issues and approaches to the problem

below.

9.3.1 Name Service (DNS)

In most of this book, we have been using addresses to identify hosts.

While perfectly suited for processing by routers, addresses are not exactly

user friendly. It is for this reason that a unique name is also typically

assigned to each host in a network. Already in this section we have seen

application protocols like HTTP using names such as www.princeton.edu.

We now describe how a naming service can be developed to map user-

friendly names into router-friendly addresses. Name services are some-

times called middleware because they fill a gap between applications and

the underlying network.

Host names differ from host addresses in two important ways. First,

they are usually of variable length and mnemonic, thereby making

them easier for humans to remember. (In contrast, fixed-length numeric

addresses are easier for routers to process.) Second, names typically con-

tain no information that helps the network locate (route packets toward)

the host. Addresses, in contrast, sometimes have routing information

embedded in them; flat addresses (those not divisible into component

parts) are the exception.

Before getting into the details of how hosts are named in a network,

we first introduce some basic terminology. First, a name space defines

the set of possible names. A name space can be either flat (names are

not divisible into components) or hierarchical (Unix file names are an

obvious example). Second, the naming system maintains a collection of

bindings of names to values. The value can be anything we want the nam-

ing system to return when presented with a name; in many cases, it is

an address. Finally, a resolution mechanism is a procedure that, when

invoked with a name, returns the corresponding value. A name server is
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a specific implementation of a resolution mechanism that is available on

a network and that can be queried by sending it a message.

Because of its large size, the Internet has a particularly well-developed

naming system in place—the Domain Name System (DNS). We therefore

use DNS as a framework for discussing the problem of naming hosts. Note

that the Internet did not always use DNS. Early in its history, when there

were only a few hundred hosts on the Internet, a central authority called

the Network Information Center (NIC) maintained a flat table of name-to-

address bindings; this table was called hosts.txt. Whenever a site wanted

to add a new host to the Internet, the site administrator sent email to

the NIC giving the new host’s name/address pair. This information was

manually entered into the table, the modified table was mailed out to the

various sites every few days, and the system administrator at each site

installed the table on every host at the site. Name resolution was then sim-

ply implemented by a procedure that looked up a host’s name in the local

copy of the table and returned the corresponding address.

It should come as no surprise that the hosts.txt approach to naming

did not work well as the number of hosts in the Internet started to grow.

Therefore, in the mid-1980s, the Domain Naming System was put into

place. DNS employs a hierarchical namespace rather than a flat name

space, and the “table” of bindings that implements this name space is

partitioned into disjoint pieces and distributed throughout the Internet.

These subtables are made available in name servers that can be queried

over the network.

What happens in the Internet is that a user presents a host name to an

application program (possibly embedded in a compound name such as

an email address or URL), and this program engages the naming system

to translate this name into a host address. The application then opens a

connection to this host by presenting some transport protocol (e.g., TCP)

with the host’s IP address. This situation is illustrated (in the case of send-

ing email) in Figure 9.14. While this picture makes the name resolution

task look simple enough, there is a bit more to it, as we shall see.

Domain Hierarchy

DNS implements a hierarchical name space for Internet objects. Unlike

Unix file names, which are processed from left to right with the naming

components separated with slashes, DNS names are processed from right

to left and use periods as the separator. (Although they are processed from
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192.12.69.5 4

192.12.69.5 5

Name

server
Mail

program

TCP

IP

n FIGURE 9.14 Names translated into addresses, where the numbers 1 to 5 show the sequence of steps in the process.

edu com

princeton … mit

ux01    

physics

cisco … yahoo nasa …nsf arpa … navy acm … ieee

gov mil org net uk fr

…

… ux04

cs ee

n FIGURE 9.15 Example of a domain hierarchy.

right to left, humans still read domain names from left to right.) An exam-

ple domain name for a host is cicada.cs.princeton.edu. Notice that we said

domain names are used to name Internet “objects.” What we mean by this

is that DNS is not strictly used to map host names into host addresses. It

is more accurate to say that DNS maps domain names into values. For the

time being, we assume that these values are IP addresses; we will come

back to this issue later in this section.

Like the Unix file hierarchy, the DNS hierarchy can be visualized as

a tree, where each node in the tree corresponds to a domain, and the

leaves in the tree correspond to the hosts being named. Figure 9.15 gives

an example of a domain hierarchy. Note that we should not assign any
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semantics to the term domain other than that it is simply a context in

which additional names can be defined.5

There was actually a substantial amount of discussion that took place

when the domain name hierarchy was first being developed as to what

conventions would govern the names that were to be handed out near

the top of the hierarchy. Without going into that discussion in any detail,

notice that the hierarchy is not very wide at the first level. There are

domains for each country, plus the “big six” domains: .edu, .com, .gov,

.mil, .org, and .net. These six domains were all originally based in the

United States (where the Internet and DNS were invented); for exam-

ple, only U.S.-accredited educational institutions can register an .edu

domain name. In recent years, the number of top-level domains has been

expanded, partly to deal with the high demand for .com domains names.

The newer top-level domains include .biz, .coop, and .info. Another recent

development has been the support of domain names that are repre-

sented in character sets other than the Latin alphabet, such as Arabic and

Chinese.

Name Servers

The complete domain name hierarchy exists only in the abstract. We now

turn our attention to the question of how this hierarchy is actually imple-

mented. The first step is to partition the hierarchy into subtrees called

zones. Figure 9.16 shows how the hierarchy given in Figure 9.15 might

edu com

princeton … mit

ux01

physics

cisco … yahoo nasa …nsf arpa … navy acm … ieee

gov mil org net uk fr

…

…ux04

cs ee

n FIGURE 9.16 Domain hierarchy partitioned into zones.

5Confusingly, the word domain is also used in Internet routing, where it means some-

thing different than it does in DNS, being roughly equivalent to the term autonomous

system.
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be divided into zones. Each zone can be thought of as corresponding to

some administrative authority that is responsible for that portion of the

hierarchy. For example, the top level of the hierarchy forms a zone that is

managed by the Internet Corporation for Assigned Names and Numbers

(ICANN). Below this is a zone that corresponds to Princeton University.

Within this zone, some departments do not want the responsibility of

managing the hierarchy (and so they remain in the university-level zone),

while others, like the Department of Computer Science, manage their

own department-level zone.

The relevance of a zone is that it corresponds to the fundamental unit

of implementation in DNS—the name server. Specifically, the informa-

tion contained in each zone is implemented in two or more name servers.

Each name server, in turn, is a program that can be accessed over the

Internet. Clients send queries to name servers, and name servers respond

with the requested information. Sometimes the response contains the

final answer that the client wants, and sometimes the response contains a

pointer to another server that the client should query next. Thus, from an

implementation perspective, it is more accurate to think of DNS as being

represented by a hierarchy of name servers rather than by a hierarchy of

domains, as illustrated in Figure 9.17.

Princeton

name server

Cisco

name server

CS

name server

EE

name server

…

…

Root

name server

.edu

name server

.com

name server

n FIGURE 9.17 Hierarchy of name servers.
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Note that each zone is implemented in two or more name servers for

the sake of redundancy; that is, the information is still available even if

one name server fails. On the flip side, a given name server is free to

implement more than one zone.

Each name server implements the zone information as a collection of

resource records. In essence, a resource record is a name-to-value binding

or, more specifically, a 5-tuple that contains the following fields:

〈Name, Value, Type, Class, TTL 〉

The Name and Value fields are exactly what you would expect, while

the Type field specifies how the Value should be interpreted. For exam-

ple, Type = A indicates that the Value is an IP address. Thus, A records

implement the name-to-address mapping we have been assuming. Other

record types include:

n NS—The Value field gives the domain name for a host that is

running a name server that knows how to resolve names within the

specified domain.

n CNAME—The Value field gives the canonical name for a particular

host; it is used to define aliases.

n MX—The Value field gives the domain name for a host that is

running a mail server that accepts messages for the specified

domain.

The Class field was included to allow entities other than the NIC to define

useful record types. To date, the only widely used Class is the one used by

the Internet; it is denoted IN. Finally, the time-to-live (TTL) field shows

how long this resource record is valid. It is used by servers that cache

resource records from other servers; when the TTL expires, the server

must evict the record from its cache.

To better understand how resource records represent the information

in the domain hierarchy, consider the following examples drawn from the

domain hierarchy given in Figure 9.15. To simplify the example, we ignore

the TTL field and we give the relevant information for only one of the

name servers that implement each zone.

First, a root name server contains an NS record for each top-level

domain (TLD) name server. This identifies a server that can resolve
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queries for this part of the DNS hierarchy (.edu and .com in this example).

It also has A records that translates these names into the corresponding

IP addresses. Taken together, these two records effectively implement a

pointer from the root name server to one of the TLD servers.

〈edu,a3.nstld.com,NS, IN〉

〈a3.nstld.com,192.5.6.32,A, IN〉

〈com,a.gtld-servers.net,NS, IN〉

〈a.gtld-servers.net,192.5.6.30,A, IN〉

...

Moving our way down the hierarchy by one level, the a3.nstld.com

server has records for .edu domains like this:

〈princeton.edu,dns.princeton.edu,NS, IN〉

〈dns.princeton.edu,128.112.129.15,A, IN〉

...

In this case, we get an NS record and an A record for the name

server that is responsible for the princeton.edu part of the hierarchy.

That server might be able to directly resolve some queries (e.g., for

email.princeton.edu) while it would redirect others to a server at yet

another layer in the hierarchy (e.g., for a query about penguins.cs

.princeton.edu).

〈email.princeton.edu,128.112.198.35,A, IN〉

〈penguins.cs.princeton.edu,dns1.cs.princeton.edu,NS, IN〉

〈dns1.cs.princeton.edu,128.112.136.10,A, IN〉

...

Finally, a third-level name server, such as the one managed by domain

cs.princeton.edu, contains A records for all of its hosts. It might also

define a set of aliases (CNAME records) for each of those hosts. Aliases

are sometimes just convenient (e.g., shorter) names for machines, but

they can also be used to provide a level of indirection. For exam-

ple, www.cs.princeton.edu is an alias for the host named coreweb.cs

.princeton.edu. This allows the site’s web server to move to another
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machine without affecting remote users; they simply continue to use

the alias without regard for what machine currently runs the domain’s

web server. The mail exchange (MX) records serve the same purpose

for the email application—they allow an administrator to change which

host receives mail on behalf of the domain without having to change

everyone’s email address.

〈penguins.cs.princeton.edu,128.112.155.166,A, IN〉

〈www.cs.princeton.edu,coreweb.cs.princeton.edu,CNAME, IN〉

〈coreweb.cs.princeton.edu,128.112.136.35,A, IN〉

〈cs.princeton.edu,mail.cs.princeton.edu,MX, IN〉

〈mail.cs.princeton.edu,128.112.136.72,A, IN〉

...

Note that, although resource records can be defined for virtually any

type of object, DNS is typically used to name hosts (including servers) and

sites. It is not used to name individual people or other objects like files

or directories; other naming systems are typically used to identify such

objects. For example, X.500 is an ISO naming system designed to make it

easier to identify people. It allows you to name a person by giving a set

of attributes: name, title, phone number, postal address, and so on. X.500

proved too cumbersome—and, in some sense, was usurped by powerful

search engines now available on the Web—but it did eventually evolve

into the Lightweight Directory Access Protocol (LDAP). LDAP is a subset

of X.500 originally designed as a PC front end to X.500. Today, it is gain-

ing in popularity, mostly at the enterprise level, as a system for learning

information about users.

Name Resolution

Given a hierarchy of name servers, we now consider the issue of how

a client engages these servers to resolve a domain name. To illus-

trate the basic idea, suppose the client wants to resolve the name

penguins.cs.princeton.edu relative to the set of servers given in the previ-

ous subsection. The client could first send a query containing this name

to one of the root servers (as we’ll see below, this rarely happens in

practice but will suffice to illustrate the basic operation for now). The

root server, unable to match the entire name, returns the best match it
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Naming Conventions

Our description of DNS focuses on the underlyingmechanisms—that is, how

the hierarchy is partitioned over multiple servers and how the resolution

process works. There is an equally interesting, but much less technical, issue

of the conventions that are used to decide the names to use in the mech-

anism. For example, it is by convention that all U.S. universities are under

the .edu domain, while English universities are under the .ac (academic)

subdomain of the .uk (United Kingdom) domain.

The thing to understand about conventions is that they are sometimes

defined without anyone making an explicit decision. For example, by con-

vention a site hides the exact host that serves as its mail exchange behind

the MX record. An alternative would have been to adopt the convention of

sending mail to user@mail.cs.princeton.edu, much as we expect to find

a site’s public FTP directory at ftp.cs.princeton.edu and its WWW server at

www.cs.princeton.edu. This last one is so prevalent that many people do

not even realize it is just a convention.

Conventions also exist at the local level, where an organization names

its machines according to some consistent set of rules. Given that the host

names venus, saturn, and mars are among the most popular in the Inter-

net, it’s not too hard to figure out one common naming convention. Some

host naming conventions are more imaginative, however. For example, one

site named its machines up, down, crashed, rebooting, and so on, resulting

in confusing statements like “rebooting has crashed” and “up is down.” Of

course, there are also less imaginative names, such as those who name their

machines after the integers.

has—the NS record for edu which points to the TLD server a3.nstld.com.

The server also returns all records that are related to this record, in

this case, the A record for a3.nstld.com. The client, having not received

the answer it was after, next sends the same query to the name

server at IP host 192.5.6.32. This server also cannot match the whole

name and so returns the NS and corresponding A records for the

princeton.edu domain. Once again, the client sends the same query as

before to the server at IP host 128.112.129.15, and this time gets back the

NS record and corresponding A record for the cs.princeton.edu domain.

This time, the server that can fully resolve the query has been reached.

A final query to the server at 128.112.136.10 yields the A record for

penguins.cs.princeton.edu, and the client learns that the corresponding IP

address is 128.112.155.166.
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This example still leaves a couple of questions about the resolution

process unanswered. The first question is how did the client locate the

root server in the first place, or, put another way, how do you resolve the

name of the server that knows how to resolve names? This is a funda-

mental problem in any naming system, and the answer is that the system

has to be bootstrapped in some way. In this case, the name-to-address

mapping for one or more root servers is well known; that is, it is published

through some means outside the naming system itself.

In practice, however, not all clients know about the root servers.

Instead, the client program running on each Internet host is initialized

with the address of a local name server. For example, all the hosts in the

Department of Computer Science at Princeton know about the server

on dns1.cs.princeton.edu. This local name server, in turn, has resource

records for one or more of the root servers, for example:

〈 ‘root’,a.root-servers.net,NS, IN〉

〈a.root-servers.net,198.41.0.4,A, IN〉

Thus, resolving a name actually involves a client querying the local server,

which in turn acts as a client that queries the remote servers on the

original client’s behalf. This results in the client/server interactions illus-

trated in Figure 9.18. One advantage of this model is that all the hosts

in the Internet do not have to be kept up-to-date on where the current

root servers are located; only the servers have to know about the root.

A second advantage is that the local server gets to see the answers that

come back from queries that are posted by all the local clients. The local

server caches these responses and is sometimes able to resolve future

queries without having to go out over the network. The TTL field in the

resource records returned by remote servers indicates how long each

record can be safely cached. This caching mechanism can be used fur-

ther up the hierarchy as well, reducing the load on the root and TLD

servers.

The second question is how the system works when a user submits

a partial name (e.g., penguins) rather than a complete domain name

(e.g., penguins.cs.princeton.edu). The answer is that the client program

is configured with the local domain in which the host resides (e.g.,

cs.princeton.edu), and it appends this string to any simple names before

sending out a query.
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n FIGURE 9.18 Name resolution in practice, where the numbers 1 to 10 show the sequence of steps in the process.

Just to make sure we are clear, we have now seen three different levels of

identifiers—domain names, IP addresses, and physical network addresses—and

the mapping of identifiers at one level into identifiers at another level happens

at different points in the network architecture. First, users specify domain names

when interacting with the application. Second, the application engages DNS to

translate this name into an IP address; it is the IP address that is placed in each

datagram, not the domain name. (As an aside, this translation process involves

IP datagrams being sent over the Internet, but these datagrams are addressed

to a host that runs a name server, not to the ultimate destination.) Third, IP does

forwarding at each router, which often means that it maps one IP address into

another; that is, it maps the ultimate destination’s address into the address for

the next hop router. Finally, IP engages the Address Resolution Protocol (ARP)

to translate the next hop IP address into the physical address for that machine;

the next hop might be the ultimate destination or it might be an intermediate

router. Frames sent over the physical network have these physical addresses in

their headers.
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9.3.2 NetworkManagement (SNMP)

A network is a complex system, both in terms of the number of nodes

that are involved and in terms of the suite of protocols that can be run-

ning on any one node. Even if you restrict yourself to worrying about the

nodes within a single administrative domain, such as a campus, there

might be dozens of routers and hundreds—or even thousands—of hosts

to keep track of. If you think about all the state that is maintained and

manipulated on any one of those nodes—address translation tables, rout-

ing tables, TCP connection state, and so on—then it is easy to become

depressed about the prospect of having to manage all of this information.

It is easy to imagine wanting to know about the state of various pro-

tocols on different nodes. For example, you might want to monitor the

number of IP datagram reassemblies that have been aborted, so as to

determine if the timeout that garbage collects partially assembled data-

grams needs to be adjusted. As another example, you might want to keep

track of the load on various nodes (i.e., the number of packets sent or

received) so as to determine if new routers or links need to be added to

the network. Of course, you also have to be on the watch for evidence of

faulty hardware and misbehaving software.

What we have just described is the problem of network management,

an issue that pervades the entire network architecture. Since the nodes we

want to keep track of are distributed, our only real option is to use the net-

work to manage the network. This means we need a protocol that allows

us to read, and possibly write, various pieces of state information on dif-

ferent network nodes. The most widely used protocol for this purpose is

the Simple Network Management Protocol (SNMP).

SNMP is essentially a specialized request/reply protocol that supports

two kinds of request messages: GET and SET. The former is used to

retrieve a piece of state from some node, and the latter is used to store a

new piece of state in some node. (SNMP also supports a third operation,

GET-NEXT, which we explain below.) The following discussion focuses on

the GET operation, since it is the one most frequently used.

SNMP is used in the obvious way. A system administrator interacts with

a client program that displays information about the network. This client

program usually has a graphical interface. You can think of this interface

as playing the same role as a web browser. Whenever the administrator

selects a certain piece of information that he or she wants to see, the
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client program uses SNMP to request that information from the node

in question. (SNMP runs on top of UDP.) An SNMP server running on

that node receives the request, locates the appropriate piece of infor-

mation, and returns it to the client program, which then displays it to

the user.

There is only one complication to this otherwise simple scenario:

Exactly how does the client indicate which piece of information it wants

to retrieve, and, likewise, how does the server know which variable in

memory to read to satisfy the request? The answer is that SNMP depends

on a companion specification called the management information base

(MIB). The MIB defines the specific pieces of information—the MIB

variables—that you can retrieve from a network node.

The current version of MIB, called MIB-II, organizes variables into 10

different groups. You will recognize that most of the groups correspond to

one of the protocols described in this book, and nearly all of the variables

defined for each group should look familiar. For example:

n System—General parameters of the system (node) as a whole,

including where the node is located, how long it has been up, and

the system’s name

n Interfaces—Information about all the network interfaces

(adaptors) attached to this node, such as the physical address of

each interface and how many packets have been sent and received

on each interface

n Address translation—Information about the Address Resolution

Protocol, and in particular, the contents of its address translation

table

n IP—Variables related to IP, including its routing table, how many

datagrams it has successfully forwarded, and statistics about

datagram reassembly; includes counts of how many times IP drops

a datagram for one reason or another

n TCP—Information about TCP connections, such as the number of

passive and active opens, the number of resets, the number of

timeouts, default timeout settings, and so on; per-connection

information persists only as long as the connection exists

n UDP—Information about UDP traffic, including the total number

of UDP datagrams that have been sent and received.
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There are also groups for Internet Control Message Protocol (ICMP), Exte-

rior Gateway Protocol (EGP), and SNMP itself. The tenth group is used by

different media.

Returning to the issue of the client stating exactly what information it

wants to retrieve from a node, having a list of MIB variables is only half the

battle. Two problems remain. First, we need a precise syntax for the client

to use to state which of the MIB variables it wants to fetch. Second, we

need a precise representation for the values returned by the server. Both

problems are addressed using Abstract Syntax Notation One (ASN.1).

Consider the second problem first. As we already saw in Chapter 7,

ASN.1/Basic Encoding Rules (BER) defines a representation for different

data types, such as integers. The MIB defines the type of each variable,

and then it uses ASN.1/BER to encode the value contained in this vari-

able as it is transmitted over the network. As far as the first problem

is concerned, ASN.1 also defines an object identification scheme; this

identification system is not described in Chapter 7. The MIB uses this

identification system to assign a globally unique identifier to each MIB

variable. These identifiers are given in a “dot” notation, not unlike domain

names. For example, 1.3.6.1.2.1.4.3 is the unique ASN.1 identifier for the

IP-related MIB variable ipInReceives; this variable counts the number of

IP datagrams that have been received by this node. In this example, the

1.3.6.1.2.1 prefix identifies the MIB database (remember, ASN.1 object IDs

are for all possible objects in the world), the 4 corresponds to the IP group,

and the final 3 denotes the third variable in this group.

Thus, network management works as follows. The SNMP client puts

the ASN.1 identifier for the MIB variable it wants to get into the request

message, and it sends this message to the server. The server then maps

this identifier into a local variable (i.e., into a memory location where the

value for this variable is stored), retrieves the current value held in this

variable, and uses ASN.1/BER to encode the value it sends back to the

client.

There is one final detail. Many of the MIB variables are either tables

or structures. Such compound variables explain the reason for the SNMP

GET-NEXT operation. This operation, when applied to a particular vari-

able ID, returns the value of that variable plus the ID of the next variable,

for example, the next item in the table or the next field in the struc-

ture. This aids the client in “walking through” the elements of a table or

structure.
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9.4 OVERLAY NETWORKS

From its inception, the Internet has adopted a clean model, in which the

routers inside the network are responsible for forwarding packets from

source to destination, and application programs run on the hosts con-

nected to the edges of the network. The client/server paradigm illustrated

by the applications discussed in the first two sections of this chapter

certainly adhere to this model.

In the last few years, however, the distinction between packet for-

warding and application processing has become less clear. New applica-

tions are being distributed across the Internet, and in many cases these

applications make their own forwarding decisions. These new hybrid

applications can sometimes be implemented by extending traditional

routers and switches to support a modest amount of application-specific

processing. For example, so-called level-7 switches sit in front of server

clusters and forward HTTP requests to a specific server based on the

requested URL. However, overlay networks are quickly emerging as the

mechanism of choice for introducing new functionality into the Internet.

You can think of an overlay as a logical network implemented on top

of some underlying network. By this definition, the Internet started out as

an overlay network on top of the links provided by the old telephone net-

work. Figure 9.19 depicts an overlay implemented on top of an underlying

network. Each node in the overlay also exists in the underlying network;

n FIGURE 9.19 Overlay network layered on top of a physical network.
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it processes and forwards packets in an application-specific way. The

links that connect the overlay nodes are implemented as tunnels through

the underlying network. Multiple overlay networks can exist on top of

the same underlying network—each implementing its own application-

specific behavior—and overlays can be nested, one on top of another.

For example, all of the example overlay networks discussed in this section

treat today’s Internet as the underlying network.

We have already seen examples of tunneling, for example, to imple-

ment virtual private networks (VPNs). As a brief refresher, the nodes on

either end of a tunnel treat the multi-hop path between them as a single

logical link, the nodes that are tunneled through forward packets based

on the outer header, never aware that the end nodes have attached an

inner header. Figure 9.20 shows three overlay nodes (A, B, and C) con-

nected by a pair of tunnels. In this example, overlay node B might make

a forwarding decision for packets from A to C based on the inner header

(IHdr), and then attach an outer header (OHdr) that identifies C as the des-

tination in the underlying network. Nodes A, B, and C are able to interpret

both the inner and outer header, whereas the intermediate routers under-

stand only the outer header. Similarly, A, B, and C have addresses in both

the overlay network and the underlying network, but they are not neces-

sarily the same; for example, their underlying address might be a 32-bit

IP address, while their overlay address might be an experimental 128-bit

address. In fact, the overlay need not use conventional addresses at all

but may route based on URLs, domain names, an XML query, or even the

content of the packet.

A

IHdr ...

IHdrOHdr ... IHdrOHdr ...

IHdr ... IHdr ...

CB

n FIGURE 9.20 Overlay nodes tunnel through physical nodes.
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Overlays and the Ossification of the Internet

Given its popularity and widespread use, it is easy to forget that at one time

the Internet was a laboratory for researchers to experiment with packet-

switched networking. The more the Internet has become a commercial

success, however, the less useful it is as a platform for playingwith new ideas.

Today, commercial interests shape the Internet’s continued development.

In fact, as far back as 2001, a report from the National Research Council

pointed to the ossification of the Internet, both intellectually (pressure for

compatibility with current standards stifles innovation) and in terms of the

infrastructure itself (it is nearly impossible for researchers to affect the core

infrastructure). The report went on to observe that, at the same time, awhole

new set of challenges were emerging thatmay require a fresh approach. The

dilemma, according to the report, is that

. . . successful and widely adopted technologies are subject to ossifica-

tion, which makes it hard to introduce new capabilities or, if the cur-

rent technology has run its course, to replace it with something better.

Existing industry players are not generally motivated to develop or

deploy disruptive technologies . . .

Finding the right way to introduce disruptive technologies is an inter-

esting issue. Such innovations are likely to do some things very well, but

overall they lag current technology in other important areas. For example,

to introduce a new routing strategy into the Internet, one would have to

build a router that not only supports this new strategy but also competes

with established vendors in terms of performance, reliability, management

toolset, and so on. This is an extremely tall order. What the innovator needs

is a way to allow users to take advantage of the new idea without having to

write the hundreds of thousands of lines of code needed to support just the

base system.

Overlay networks provide exactly this opportunity. Overlay nodes can be

programmed to support the new capability or feature and then depend on

conventional nodes to provide the underlying connectivity. Over time, if the

idea deployed in the overlay proves useful, there may be economic moti-

vation to migrate the functionality into the base system—that is, add it to

the feature set of commercial routers. On the other hand, the functional-

ity may be complex enough that an overlay layer may be exactly where it

belongs.
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9.4.1 Routing Overlays

The simplest kind of overlay is one that exists purely to support an

alternative routing strategy; no additional application-level processing is

performed at the overlay nodes. You can view a virtual private network

(see Section 4.1.8) as an example of a routing overlay, but one that doesn’t

so much define an alternative strategy or algorithm as it does alternative

routing table entries to be processed by the standard IP forwarding algo-

rithm. In this particular case, the overlay is said to use “IP tunnels,” and

the ability to utilize these VPNs is supported in many commercial routers.

Suppose, however, you wanted to use a routing algorithm that com-

mercial router vendors were not willing to include in their products. How

would you go about doing it? You could simply run your algorithm on a

collection of end hosts, and tunnel through the Internet routers. These

hosts would behave like routers in the overlay network: As hosts they are

probably connected to the Internet by only one physical link, but as a

node in the overlay they would be connected to multiple neighbors via

tunnels.

Since overlays, almost by definition, are a way to introduce new

technologies independent of the standardization process, there are no

standard overlays we can point to as examples. Instead, we illustrate

the general idea of routing overlays by describing several experimental

systems that have been built by network researchers.

Experimental Versions of IP

Overlays are ideal for deploying experimental versions of IP that you hope

will eventually take over the world. For example, IP multicast (Section 4.2)

started off as an extension to IP and even today is not enabled in many

Internet routers. The MBone (multicast backbone) was an overlay net-

work that implemented IP multicast on top of the unicast routing pro-

vided by the Internet. A number of multimedia conference tools were

developed for and deployed on the Mbone. For example, IETF meetings—

which are a week long and attract thousands of participants—were for

many years broadcast over the MBone.

Like VPNs, the MBone used both IP tunnels and IP addresses, but

unlike VPNs, the MBone implemented a different forwarding algorithm—

forwarding packets to all downstream neighbors in the shortest path

multicast tree. As an overlay, multicast-aware routers tunnel through
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legacy routers, with the hope that one day there will be no more legacy

routers.

The 6-BONE was a similar overlay that was used to incrementally

deploy IPv6. Like the MBone, the 6-BONE used tunnels to forward pack-

ets through IPv4 routers. Unlike the MBone, however, 6-BONE nodes

did not simply provide a new interpretation of IPv4’s 32-bit addresses.

Instead, they forwarded packets based on IPv6’s 128-bit address space.

The 6-BONE also supported IPv6 multicast.

End SystemMulticast

Although IP multicast is popular with researchers and certain segments

of the networking community, its deployment in the global Internet has

been limited at best. In response, multicast-based applications like video-

conferencing have recently turned to an alternative strategy, called end

system multicast. The idea of end system multicast is to accept that

IP multicast will never become ubiquitous and to instead let the end

hosts that are participating in a particular multicast-based application

implement their own multicast trees.

Before describing how end system multicast works, it is important to

first understand that, unlike VPNs and the MBone, end system multicast

assumes that only Internet hosts (as opposed to Internet routers) partici-

pate in the overlay. Moreover, these hosts typically exchange messages

with each other through UDP tunnels rather than IP tunnels, making it

easy to implement as regular application programs. This makes it pos-

sible to view the underlying network as a fully connected graph, since

every host in the Internet is able to send a message to every other

host. Abstractly, then, end system multicast solves the following prob-

lem: Starting with a fully connected graph representing the Internet, the

goal is to find the embedded multicast tree that spans all the group

members.

Since we take the underlying Internet to be fully connected, a naive

solution would be to have each source directly connected to each mem-

ber of the group. In other words, end system multicast could be imple-

mented by having each node send unicast messages to every group

member. To see the problem in doing this, especially compared to

implementing IP multicast in routers, consider the example topology in

Figure 9.21. Figure 9.21(a) depicts an example physical topology, where
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n FIGURE 9.21 Alternative multicast trees mapped onto a physical topology.

R1 and R2 are routers connected by a low-bandwidth transcontinental

link; A, B, C, and D are end hosts; and link delays are given as edge

weights. Assuming A wants to send a multicast message to the other

three hosts, Figure 9.21(b) shows how naive unicast transmission would

work. This is clearly undesirable because the same message must traverse

the link A–R1 three times, and two copies of the message traverse R1–

R2. Figure 9.21(c) depicts the IP multicast tree constructed by the Dis-

tance Vector Multicast Routing Protocol (DVMRP). Clearly, this approach

eliminates the redundant messages. Without support from the routers,

however, the best one can hope for with end system multicast is a tree

similar to the one shown in Figure 9.21(d). End system multicast defines

an architecture for constructing this tree.
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n FIGURE 9.22 Multicast tree embedded in an overlay mesh.

The general approach is to support multiple levels of overlay networks,

each of which extracts a subgraph from the overlay below it, until we

have selected the subgraph that the application expects. For end system

multicast, in particular, this happens in two stages: First we construct

a simple mesh overlay on top of the fully connected Internet, and then

we select a multicast tree within this mesh. The idea is illustrated in

Figure 9.22, again assuming the four end hosts A, B, C, and D. The first

step is the critical one: Once we have selected a suitable mesh overlay, we

simply run a standard multicast routing algorithm (e.g., DVMRP) on top

of it to build the multicast tree. We also have the luxury of ignoring the

scalability issue that Internet-wide multicast faces since the intermediate

mesh can be selected to include only those nodes that want to participate

in a particular multicast group.

The key to constructing the intermediate mesh overlay is to select a

topology that roughly corresponds to the physical topology of the under-

lying Internet, but we have to do this without anyone telling us what the

underlying Internet actually looks like since we are running only on end

hosts and not routers. The general strategy is for the end hosts to measure

the roundtrip latency to other nodes and decide to add links to the mesh

only when they like what they see. This works as follows.



PETERSON-AND-DAVIE 15-ch09-696-800-9780123850591 2011/11/1 22:47 Page 766 #71

766 CHAPTER 9 Applications

First, assuming a mesh already exists, each node exchanges the list of

all other nodes it believes is part of the mesh with its directly connected

neighbors. When a node receives such a membership list from a neighbor,

it incorporates that information into its membership list and forwards

the resulting list to its neighbors. This information eventually propagates

through the mesh, much as in a distance vector routing protocol.

When a host wants to join the multicast overlay, it must know the IP

address of at least one other node already in the overlay. It then sends

a “join mesh” message to this node. This connects the new node to the

mesh by an edge to the known node. In general, the new node might send

a join message to multiple current nodes, thereby joining the mesh by

multiple links. Once a node is connected to the mesh by a set of links,

it periodically sends “keep alive” messages to its neighbors, letting them

know that it still wants to be part of the group.

When a node leaves the group, it sends a “leave mesh” message to its

directly connected neighbors, and this information is propagated to the

other nodes in the mesh via the membership list described above. Alter-

natively, a node can fail or just silently decide to quit the group, in which

case its neighbors detect that it is no longer sending “keep alive” mes-

sages. Some node departures have little effect on the mesh, but should

a node detect that the mesh has become partitioned due to a departing

node, it creates a new edge to a node in the other partition by sending

it a “join mesh” message. Note that multiple neighbors can simultane-

ously decide that a partition has occurred in the mesh, leading to multiple

cross-partition edges being added to the mesh.

As described so far, we will end up with a mesh that is a subgraph of

the original fully connected Internet, but it may have suboptimal per-

formance because (1) initial neighbor selection adds random links to

the topology, (2) partition repair might add edges that are essential at

the moment but not useful in the long run, (3) group membership may

change due to dynamic joins and departures, and (4) underlying network

conditions may change. What needs to happen is that the system must

evaluate the value of each edge, resulting in new edges being added to the

mesh and existing edges being removed over time.

To add new edges, each node i periodically probes some random mem-

ber j that it is not currently connected to in the mesh, measures the

round-trip latency of edge (i, j), and then evaluates the utility of adding

this edge. If the utility is above a certain threshold, link (i, j) is added to
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the mesh. Evaluating the utility of adding edge (i, j) might look something

like this:

EvaluateUtility(j)

utility = 0

for each member m not equal to i

CL = current latency to node m along route through mesh

NL = new latency to node m along mesh if edge (i, j) is added

if (NL < CL) then

utility += (CL - NL)/CL

return utility

Deciding to remove an edge is similar, except each node i computes the

cost of each link to current neighbor j as follows:

EvaluateCost(j)

Costij = number of members for which i uses j as next hop

Costji = number of members for which j uses i as next hop

return max(Costij , Costji)

It then picks the neighbor with the lowest cost, and drops it if the cost falls

below a certain threshold.

Finally, since the mesh is maintained using what is essentially a dis-

tance vector protocol, it is trivial to run DVMRP to find an appropriate

multicast tree in the mesh. Note that, although it is not possible to prove

that the protocol just described results in the optimum mesh network,

thereby allowing DVMRP to select the best possible multicast tree, both

simulation and extensive practical experience suggests that it does a

good job.

Resilient Overlay Networks

Another function that can be performed by an overlay is to find alter-

native routes for traditional unicast applications. Such overlays exploit

the observation that the triangle inequality does not hold in the Internet.

Figure 9.23 illustrates what we mean by this. It is not uncommon to find

three sites in the Internet—call them A, B, and C—such that the latency

between A and B is greater than the sum of the latencies from A to C and

from C to B. That is, sometimes you would be better off indirectly sending

your packets via some intermediate node than sending them directly to

the destination.
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n FIGURE 9.23 The triangle inequality does not necessarily hold in networks.

How can this be? Well, the Border Gateway Protocol (BGP) never

promised that it would find the shortest route between any two sites;

it only tries to find some route. To make matters more complex, BGP’s

routes are heavily influenced by policy issues, such as who is paying

whom to carry their traffic. This often happens, for example, at peering

points between major backbone ISPs. In short, that the triangle inequality

does not hold in the Internet should not come as a surprise.

How do we exploit this observation? The first step is to realize that there

is a fundamental tradeoff between the scalability and optimality of a rout-

ing algorithm. On the one hand, BGP scales to very large networks, but

often does not select the best possible route and is slow to adapt to net-

work outages. On the other hand, if you were only worried about finding

the best route among a handful of sites, you could do a much better job of

monitoring the quality of every path you might use, thereby allowing you

to select the best possible route at any moment in time.

An experimental overlay, called the Resilient Overlay Network (RON),

does exactly this. RON scales to only a few dozen nodes because it uses

an n×n strategy of closely monitoring (via active probes) three aspects

of path quality—latency, available bandwidth, and loss probability—

between every pair of sites. It is then able to both select the optimal route
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between any pair of nodes, and rapidly change routes should network

conditions change. Experience shows that RON is able to deliver mod-

est performance improvements to applications, but more importantly, it

recovers from network failures much more quickly. For example, during

one 64-hour period in 2001, an instance of RON running on 12 nodes

detected 32 outages lasting over 30 minutes, and it was able to recover

from all of them in less than 20 seconds on average. This experiment

also suggested that forwarding data through just one intermediate node

is usually sufficient to recover from Internet failures.

Since RON is not designed to be a scalable approach, it is not possi-

ble to use RON to help random host A communicate with random host

B; A and B have to know ahead of time that they are likely to communi-

cate and then join the same RON. However, RON seems like a good idea

in certain settings, such as when connecting a few dozen corporate sites

spread across the Internet or allowing you and 50 of your friends to estab-

lish your own private overlay for the sake of running some application.

The real question, though, is what happens when everyone starts to run

their own RON. Does the overhead of millions of RONs aggressively prob-

ing paths swamp the network, and does anyone see improved behavior

when many RONs compete for the same paths? These questions are still

unanswered.

All of these overlays illustrate a concept that is central to computer networks

in general: virtualization.6 That is, it is possible to build a virtual network from

abstract (logical) resources on top of a physical network constructed from physi-

cal resources. Moreover, it is possible to stack these virtualized networks on top

of each other and for multiple virtual network to coexist at the same level. Each

virtual network, in turn, provides new capabilities that are of value to some set of

users, applications, or higher-level networks.

9.4.2 Peer-to-Peer Networks

Music-sharing applications like Napsterr and KaZaA introduced the term

“peer-to-peer” into the popular vernacular. But what exactly does it mean

for a system to be “peer-to-peer”? Certainly in the context of sharing

MP3 files it means not having to download music from a central site,

6The term virtualization is used a lot these days in the context of data center computing

to refer to the virtualization of servers using hypervisors and similar technologies but

it’s really a much broader concept.
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but instead being able to access music files directly from whoever in the

Internet happens to have a copy stored on their computer. More gener-

ally then, we could say that a peer-to-peer network allows a community

of users to pool their resources (content, storage, network bandwidth,

disk bandwidth, CPU), thereby providing access to a larger archival store,

larger video/audio conferences, more complex searches and computa-

tions, and so on than any one user could afford individually.

Quite often, attributes like decentralized and self-organizing are men-

tioned when discussing peer-to-peer networks, meaning that individual

nodes organize themselves into a network without any centralized coor-

dination. If you think about it, terms like these could be used to describe

the Internet itself. Ironically, however, Napster was not a true peer-to-peer

system by this definition since it depended on a central registry of known

files, and users had to search this directory to find what machine offered

a particular file. It was only the last step—actually downloading the file—

that took place between machines that belong to two users, but this is

little more than a traditional client/server transaction. The only differ-

ence is that the server is owned by someone just like you rather than a

large corporation.

So we are back to the original question: What’s interesting about

peer-to-peer networks? One answer is that both the process of locating

an object of interest and the process of downloading that object onto

your local machine happen without your having to contact a centralized

authority, and at the same time the system is able to scale to millions

of nodes. A peer-to-peer system that can accomplish these two tasks in

a decentralized manner turns out to be an overlay network, where the

nodes are those hosts that are willing to share objects of interest (e.g.,

music and other assorted files), and the links (tunnels) connecting these

nodes represent the sequence of machines that you have to visit to track

down the object you want. This description will become clearer after we

look at two examples.

Gnutella

Gnutella is an early peer-to-peer network that attempted to distinguish

between exchanging music (which likely violates somebody’s copyright)

and the general sharing of files (which must be good since we’ve been

taught to share since the age of two). What’s interesting about Gnutella

is that it was one of the first such systems to not depend on a centralized
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n FIGURE 9.24 Example topology of a Gnutella peer-to-peer network.

registry of objects. Instead, Gnutella participants arrange themselves into

an overlay network similar to the one shown in Figure 9.24. That is, each

node that runs the Gnutella software (i.e., implements the Gnutella pro-

tocol) knows about some set of other machines that also run the Gnutella

software. The relationship “A and B know each other” corresponds to

the edges in this graph. (We’ll talk about how this graph is formed in a

moment.)

Whenever the user on a given node wants to find an object, Gnutella

sends a QUERY message for the object—for example, specifying the file’s

name—to its neighbors in the graph. If one of the neighbors has the

object, it responds to the node that sent it the query with a QUERY

RESPONSE message, specifying where the object can be downloaded

(e.g., an IP address and TCP port number). That node can subsequently

use GET or PUT messages to access the object. If the node cannot resolve

the query, it forwards the QUERY message to each of its neighbors (except

the one that sent it the query), and the process repeats. In other words,

Gnutella floods the overlay to locate the desired object. Gnutella sets a

TTL on each query so this flood does not continue indefinitely.

In addition to the TTL and query string, each QUERY message contains

a unique query identifier (QID), but it does not contain the identity of

the original message source. Instead, each node maintains a record of the

QUERY messages it has seen recently: both the QID and the neighbor that

sent it the QUERY. It uses this history in two ways. First, if it ever receives

a QUERY with a QID that matches one it has seen recently, the node does

not forward the QUERY message. This serves to cut off forwarding loops
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more quickly than the TTL might have done. Second, whenever the node

receives a QUERY RESPONSE from a downstream neighbor, it knows to

forward the response to the upstream neighbor that originally sent it the

QUERY message. In this way, the response works its way back to the orig-

inal node without any of the intermediate nodes knowing who wanted to

locate this particular object in the first place.

Returning to the question of how the graph evolves, a node certainly

has to know about at least one other node when it joins a Gnutella overlay.

The new node is attached to the overlay by at least this one link. After that,

a given node learns about other nodes as the result of QUERY RESPONSE

messages, both for objects it requested and for responses that just happen

to pass through it. A node is free to decide which of the nodes it discovers

in this way that it wants to keep as a neighbor. The Gnutella protocol pro-

vides PING and PONG messages by which a node probes whether or not

a given neighbor still exists and that neighbor’s response, respectively.

It should be clear that Gnutella as described here is not a particularly

clever protocol, and subsequent systems have tried to improve upon it.

One dimension along which improvements are possible is in how queries

are propagated. Flooding has the nice property that it is guaranteed to

find the desired object in the fewest possible hops, but it does not scale

well. It is possible to forward queries randomly, or according to the prob-

ability of success based on past results. A second dimension is to proac-

tively replicate the objects, since the more copies of a given object there

are, the easier it should be to find a copy. Alternatively, one could develop

a completely different strategy, which is the topic we consider next.

Structured Overlays

At the same time file sharing systems have been fighting to fill the void

left by Napster, the research community has been exploring an alternative

design for peer-to-peer networks. We refer to these networks as struc-

tured, to contrast them with the essentially random (unstructured) way

in which a Gnutella network evolves. Unstructured overlays like Gnutella

employ trivial overlay construction and maintenance algorithms, but the

best they can offer is unreliable, random search. In contrast, structured

overlays are designed to conform to a particular graph structure that

allows reliable and efficient (probabilistically bounded delay) object loca-

tion, in return for additional complexity during overlay construction and

maintenance.
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If you think about what we are trying to do at a high level, there are

two questions to consider: (1) How do we map objects onto nodes, and

(2) How do we route a request to the node that is responsible for a given

object? We start with the first question, which has a simple statement:

How do we map an object with name x into the address of some node n

that is able to serve that object? While traditional peer-to-peer networks

have no control over which node hosts object x, if we could control how

objects get distributed over the network, we might be able to do a better

job of finding those objects at a later time.

A well-known technique for mapping names into an address is to use a

hash table, so that

hash(x) −−→ n

implies object x is first placed on node n, and at a later time a client trying

to locate x would only have to perform the hash of x to determine that it

is on node n. A hash-based approach has the nice property that it tends

to spread the objects evenly across the set of nodes, but straightforward

hashing algorithms suffer from a fatal flaw: How many possible values of

n should we allow? (In hashing terminology, how many buckets should

there be?) Naively, we could decide that there are, say, 101 possible hash

values, and we use a modulo hash function; that is,

hash(x)

return x % 101

Unfortunately, if there are more than 101 nodes willing to host objects,

then we can’t take advantage of all of them. On the other hand, if we select

a number larger than the largest possible number of nodes, then there will

be some values of x that will hash into an address for a node that does not

exist. There is also the not-so-small issue of translating the value returned

by the hash function into an actual IP address.

To address these issues, structured peer-to-peer networks use an algo-

rithm known as consistent hashing, which hashes a set of objects x uni-

formly across a large ID space. Figure 9.25 visualizes a 128-bit ID space as

a circle, where we use the algorithm to place both objects

hash(object name) −−→ objid

and nodes

hash(IP addr) −−→ nodeid
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n FIGURE 9.25 Both nodes and objects map (hash) onto the ID space, where objects are maintained at the nearest node

in this space.

onto this circle. Since a 128-bit ID space is enormous, it is unlikely that an

object will hash to exactly the same ID as a machine’s IP address hashes

to. To account for this unlikelihood, each object is maintained on the node

whose ID is closest, in this 128-bit space, to the object ID. In other words,

the idea is to use a high-quality hash function to map both nodes and

objects into the same large, sparse ID space; you then map objects to

nodes by numerical proximity of their respective identifiers. Like ordinary

hashing, this distributes objects fairly evenly across nodes, but, unlike

ordinary hashing, only a small number of objects have to move when a

node (hash bucket) joins or leaves.

We now turn to the second question—how does a user that wants to

access object x know which node is closest in x’s ID in this space? One

possible answer is that each node keeps a complete table of node IDs and

their associated IP addresses, but this would not be practical for a large

network. The alternative, which is the approach used by structured peer-

to-peer networks, is to route a message to this node! In other words, if we

construct the overlay in a clever way—which is the same as saying that

we need to choose entries for a node’s routing table in a clever way—then

we find a node simply by routing toward it. Collectively, this approach is
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n FIGURE 9.26 Objects are located by routing through the peer-to-peer overlay network.

sometimes called a distributed hash table (DHT), since conceptually, the

hash table is distributed over all the nodes in the network.

Figure 9.26 illustrates what happens for a simple 28-bit ID space. To

keep the discussion as concrete as possible, we consider the approach

used by a particular peer-to-peer network called Pastry. Other systems

work in a similar manner. (See the papers cited at the end of the chapter

for additional examples.)

Suppose you are at the node with id 65a1fc (hex) and you are trying to

locate the object with ID d46a1c. You realize that your ID shares nothing

with the object’s, but you know of a node that shares at least the prefix d.

That node is closer than you in the 128-bit ID space, so you forward the

message to it. (We do not give the format of the message being forwarded,

but you can think of it as saying “locate object d46a1c.”) Assuming node

d13da3 knows of another node that shares an even longer prefix with the

object, it forwards the message on. This process of moving closer in ID-

space continues until you reach a node that knows of no closer node. This

node is, by definition, the one that hosts the object. Keep in mind that

as we logically move through “ID space” the message is actually being

forwarded, node to node, through the underlying Internet.

Each node maintains a both routing table (more below) and the IP

addresses of a small set of numerically larger and smaller node IDs. This
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is called the node’s leaf set. The relevance of the leaf set is that, once a

message is routed to any node in the same leaf set as the node that hosts

the object, that node can directly forward the message to the ultimate

destination. Said another way, the leaf set facilitates correct and efficient

delivery of a message to the numerically closest node, even though mul-

tiple nodes may exist that share a maximal length prefix with the object

ID. Moreover, the leaf set makes routing more robust because any of the

nodes in a leaf set can route a message just as well as any other node in

the same set. Thus, if one node is unable to make progress routing a mes-

sage, one of its neighbors in the leaf set may be able to. In summary, the

routing procedure is defined as follows:

Route(D)

if D is within range of my leaf set

forward to numerically closest member in leaf set

else

let l = length of shared prefix

let d = value of l-th digit in D’s address

if RouteTab[l,d] exists

forward to RouteTab[l,d]

else

forward to known node with at least as long a shared prefix

and numerically closer than this node

The routing table, denoted RouteTab, is a two-dimensional array. It

has a row for every hex digit in an ID (there such 32 digits in a 128-bit

ID) and a column for every hex value (there are obviously 16 such values).

Every entry in row i shares a prefix of length i with this node, and within

this row the entry in column j has the hex value j in the i + 1th posi-

tion. Figure 9.27 shows the first three rows of an example routing table for

node 65a1fcx, where x denotes an unspecified suffix. This figure shows

the ID prefix matched by every entry in the table. It does not show the

actual value contained in this entry—the IP address of the next node to

route to.

Adding a node to the overlay works much like routing a “locate object

message” to an object. The new node must know of at least one cur-

rent member. It asks this member to route an “add node message” to

the node numerically closest to the ID of the joining node, as shown

in Figure 9.28. It is through this routing process that the new node
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n FIGURE 9.27 Example routing table at the node with ID65a1fcx.
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addnode(d46a1c)

n FIGURE 9.28 Adding a node to the network.

learns about other nodes with a shared prefix and is able to begin fill-

ing out its routing table. Over time, as additional nodes join the over-

lay, existing nodes also have the option of including information about

the newly joined node in their routing tables. They do this when the
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new node adds a longer prefix than they currently have in their table.

Neighbors in the leaf sets also exchange routing tables with each other,

which means that over time routing information propagates through the

overlay.

The reader may have noticed that although structured overlays provide

a probabilistic bound on the number of routing hops required to locate a

given object—the number of hops in Pastry is bounded by log16N , where

N is the number of nodes in the overlay—each hop may contribute sub-

stantial delay. This is because each intermediate node may be at a random

location in the Internet. (In the worst case, each node is on a different

continent!) In fact, in a world-wide overlay network using the algorithm

as described above, the expected delay of each hop is the average delay

among all pairs of nodes in the Internet! Fortunately, one can do much

better in practice. The idea is to choose each routing table entry such that

it refers to a nearby node in the underlying physical network, among all

nodes with an ID prefix that is appropriate for the entry. It turns out that

doing so achieves end-to-end routing delays that are within a small factor

of the delay between source and destination node.

Finally, the discussion up to this point has focused on the general prob-

lem of locating objects in a peer-to-peer network. Given such a routing

infrastructure, it is possible to build different services. For example, a file

sharing service would use file names as object names. To locate a file,

you first hash its name into a corresponding object ID and then route a

“locate object message” to this ID. The system might also replicate each

file across multiple nodes to improve availability. Storing multiple copies

on the leaf set of the node to which a given file normally routes would

be one way of doing this. Keep in mind that even though these nodes

are neighbors in the ID space, they are likely to be physically distributed

across the Internet. Thus, while a power outage in an entire city might

take down physically close replicas of a file in a traditional file system,

one or more replicas would likely survive such a failure in a peer-to-peer

network.

Services other than file sharing can also be built on top of distributed

hash tables. Consider multicast applications, for example. Instead of con-

structing a multicast tree from a mesh, one could construct the tree from

edges in the structured overlay, thereby amortizing the cost of overlay

construction and maintenance across several applications and multicast

groups.
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BitTorrent

BitTorrent is a peer-to-peer file sharing protocol devised by Bram Cohen.

It is based on replicating the file or, rather, replicating segments of the file,

which are called pieces. Any particular piece can usually be downloaded

from multiple peers, even if only one peer has the entire file. The primary

benefit of BitTorrent’s replication is avoiding the bottleneck of having

only one source for a file. This is particularly useful when you consider

that any given computer has a limited speed at which it can serve files

over its uplink to the Internet, often quite a low limit due to the asymmet-

ric nature of most broadband networks. The beauty of BitTorrent is that

replication is a natural side effect of the downloading process: As soon

as a peer downloads a particular piece, it becomes another source for that

piece. The more peers downloading pieces of the file, the more piece repli-

cation occurs, distributing the load proportionately, and the more total

bandwidth is available to share the file with others. Pieces are downloaded

in random order to avoid a situation where peers find themselves lacking

the same set of pieces.

Each file is shared via its own independent BitTorrent network, called

a swarm. (A swarm could potentially share a set of files, but we describe

the single file case for simplicity.) The lifecycle of a typical swarm is as

follows. The swarm starts as a singleton peer with a complete copy of the

file. A node that wants to download the file joins the swarm, becoming

its second member, and begins downloading pieces of the file from the

original peer. In doing so, it becomes another source for the pieces it has

downloaded, even if it has not yet downloaded the entire file. (In fact, it is

common for peers to leave the swarm once they have completed their

downloads, although they are encouraged to stay longer.) Other nodes

join the swarm and begin downloading pieces from multiple peers, not

just the original peer. See Figure 9.29.

If the file remains in high demand, with a stream of new peers replacing

those who leave the swarm, the swarm could remain active indefinitely; if

not, it could shrink back to include only the original peer until new peers

join the swarm.

Now that we have an overview of BitTorrent, we can ask how requests

are routed to the peers that have a given piece. To make requests, a

would-be downloader must first join the swarm. It starts by download-

ing a .torrent file containing meta-information about the file and swarm.

The .torrent file, which may be easily replicated, is typically downloaded
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Complete file

peer C

peer Dpeer B

peer A

n FIGURE 9.29 Peers in a BitTorrent swarm download from other peers that may not yet have the complete file.

from a web server and discovered by following links from Web pages. It

contains:

n The target file’s size

n The piece size

n SHA-1 hash values (Section 8.1.4) precomputed from each piece

n The URL of the swarm’s tracker

A tracker is a server that tracks a swarm’s current membership. We’ll

see later that BitTorrent can be extended to eliminate this point of cen-

tralization, with its attendant potential for bottleneck or failure.

The would-be downloader then joins the swarm, becoming a peer, by

sending a message to the tracker giving its network address and a peer ID

that it has generated randomly for itself. The message also carries a SHA-1

hash of the main part of the .torrent file, which is used as a swarm ID.

Let’s call the new peer P. The tracker replies to P with a partial list of

peers giving their IDs and network addresses, and P establishes connec-

tions, over TCP, with some of these peers. Note that P is directly connected

to just a subset of the swarm, although it may decide to contact addi-

tional peers or even request more peers from the tracker. To establish a

BitTorrent connection with a particular peer after their TCP connection

has been established, P sends P’s own peer ID and swarm ID, and the peer

replies with its peer ID and swarm ID. If the swarm IDs don’t match, or the

reply peer ID is not what P expects, the connection is aborted.
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The resulting BitTorrent connection is symmetric: Each end can down-

load from the other. Each end begins by sending the other a bitmap

reporting which pieces it has, so each peer knows the other’s initial state.

Whenever a downloader (D) finishes downloading another piece, it sends

a message identifying that piece to each of its directly connected peers,

so those peers can update their internal representation of D’s state. This,

finally, is the answer to the question of how a download request for a

piece is routed to a peer that has the piece, because it means that each

peer knows which directly connected peers have the piece. If D needs a

piece that none of its connections has, it could connect to more or dif-

ferent peers (it can get more from the tracker) or occupy itself with other

pieces in hopes that some of its connections will obtain the piece from

their connections.

How are objects—in this case, pieces—mapped onto peer nodes? Of

course each peer eventually obtains all the pieces, so the question is really

about which pieces a peer has at a given time before it has all the pieces

or, equivalently, about the order in which a peer downloads pieces. The

answer is that they download pieces in random order, to keep them from

having a strict subset or superset of the pieces of any of their peers.

The BitTorrent described so far utilizes a central tracker that consti-

tutes a single point of failure for the swarm and could potentially be a

performance bottleneck. Also, providing a tracker can be a nuisance for

someone who would like to make a file available via BitTorrent. Newer

versions of BitTorrent additionally support “trackerless” swarms that use

a DHT-based implementation. BitTorrent client software that is tracker-

less capable implements not just a BitTorrent peer but also what we’ll call

a peer finder (the BitTorrent terminology is simply node), which the peer

uses to find peers.

Peer finders form their own overlay network, using their own proto-

col over UDP to implement a DHT. Furthermore, a peer finder network

includes peer finders whose associated peers belong to different swarms.

In other words, while each swarm forms a distinct network of BitTorrent

peers, a peer finder network instead spans swarms.

Peer finders randomly generate their own finder IDs, which are the

same size (160 bits) as swarm IDs. Each finder maintains a modest table

containing primarily finders (and their associated peers) whose IDs are

close to its own, plus some finders whose IDs are more distant. The follow-

ing algorithm ensures that finders whose IDs are close to a given swarm
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ID are likely to know of peers from that swarm; the algorithm simulta-

neously provides a way to look them up. When a finder F needs to find

peers from a particular swarm, it sends a request to the finders in its table

whose IDs are close to that swarm’s ID. If a contacted finder knows of any

peers for that swarm, it replies with their contact information. Otherwise,

it replies with the contact information of the finders in its table that are

close to the swarm, so that F can iteratively query those finders.

After the search is exhausted, because there are no finders closer to the

swarm, F inserts the contact information for itself and its associated peer

into the finders closest to the swarm. The net effect is that peers for a par-

ticular swarm get entered in the tables of the finders that are close to that

swarm.

The above scheme assumes that F is already part of the finder network,

that it already knows how to contact some other finders. This assump-

tion is true for finder installations that have run previously, because they

are supposed to save information about other finders, even across exe-

cutions. If a swarm uses a tracker, its peers are able to tell their finders

about other finders (in a reversal of the peer and finder roles) because the

BitTorrent peer protocol has been extended to exchange finder contact

information. But, how can a newly installed finder discover other finders?

The .torrent files for trackerless swarms include contact information for

one or a few finders, instead of a tracker URL, for just that situation.

An unusual aspect of BitTorrent is that it deals head-on with the issue

of fairness, or good “network citizenship.” Protocols often depend on the

good behavior of individual peers without being able to enforce it. For

example, an unscrupulous Ethernet peer could get better performance by

using a backoff algorithm that is more aggressive than exponential back-

off, or an unscrupulous TCP peer could get better performance by not

cooperating in congestion control.

The good behavior that BitTorrent depends on is peers uploading

pieces to other peers. Since the typical BitTorrent user just wants to down-

load the file as quickly as possible, there is a temptation to implement a

peer that tries to download all the pieces while doing as little uploading

as possible—this is a bad peer. To discourage bad behavior, the BitTorrent

protocol includes mechanisms that allow peers to reward or punish each

other. If a peer is misbehaving by not nicely uploading to another peer,

the second peer can choke the bad peer: It can decide to stop upload-

ing to the bad peer, at least temporarily, and send it a message saying so.
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There is also a message type for telling a peer that it has been unchoked.

The choking mechanism is also used by a peer to limit the number of its

active BitTorrent connections, to maintain good TCP performance. There

are many possible choking algorithms, and devising a good one is an art.

9.4.3 Content Distribution Networks

We have already seen how HTTP running over TCP allows web browsers

to retrieve pages from web servers. However, anyone who has waited an

eternity for a Web page to return knows that the system is far from per-

fect. Considering that the backbone of the Internet is now constructed

from OC-192 (10-Gbps) links, it’s not obvious why this should happen. It

is generally agreed that when it comes to downloading Web pages there

are four potential bottlenecks in the system:

n The first mile. The Internet may have high-capacity links in it,

but that doesn’t help you download a Web page any faster when

you’re connected by a 56-Kbps modem or a poorly performing 3G

wireless link.

n The last mile. The link that connects the server to the Internet can

be overloaded by too many requests, even if the aggregate

bandwidth of that link is quite high.

n The server itself. A server has a finite amount of resources (CPU,

memory, disk bandwidth, etc.) and can be overloaded by too many

concurrent requests.

n Peering points. The handful of ISPs that collectively implement the

backbone of the Internet may internally have high-bandwidth

pipes, but they have little motivation to provide high-capacity

connectivity to their peers. If you are connected to ISP A and the

server is connected to ISP B, then the page you request may get

dropped at the point where A and B peer with each other.

There’s not a lot anyone except you can do about the first problem, but

it is possible to use replication to address the remaining problems. Sys-

tems that do this are often called Content Distribution Networks (CDNs).

Akamai operates what is probably the best-known CDN.

The idea of a CDN is to geographically distribute a collection of server

surrogates that cache pages normally maintained in some set of backend

servers. Thus, rather than having millions of users wait forever to contact
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www.cnn.com when a big news story breaks—such a situation is known as

a flash crowd—it is possible to spread this load across many servers. More-

over, rather than having to traverse multiple ISPs to reach www.cnn.com,

if these surrogate servers happen to be spread across all the backbone

ISPs, then it should be possible to reach one without having to cross a

peering point. Clearly, maintaining thousands of surrogate servers all over

the Internet is too expensive for any one site that wants to provide better

access to its Web pages. Commercial CDNs provide this service for many

sites, thereby amortizing the cost across many customers.

Although we call them surrogate servers, in fact, they can just as cor-

rectly be viewed as caches. If they don’t have a page that has been

requested by a client, they ask the backend server for it. In practice,

however, the backend servers proactively replicate their data across the

surrogates rather than wait for surrogates to request it on demand. It’s

also the case that only static pages, as opposed to dynamic content, are

distributed across the surrogates. Clients have to go to the backend server

for any content that either changes frequently (e.g., sports scores and

stock quotes) or is produced as the result of some computation (e.g., a

database query).

Having a large set of geographically distributed servers does not fully

solve the problem. To complete the picture, CDNs also need to provide

a set of redirectors that forward client requests to the most appropriate

server, as shown in Figure 9.30. The primary objective of the redirectors

is to select the server for each request that results in the best response

time for the client. A secondary objective is for the system as a whole

to process as many requests per second as the underlying hardware

(network links and web servers) is able to support. The average number

of requests that can be satisfied in a given time period—known as the

system throughput—is primarily an issue when the system is under heavy

load, such as when a flash crowd is accessing a small set of pages or a

Distributed Denial of Service (DDoS) attacker is targeting a particular

site, as happened to CNN, Yahoo, and several other high-profile sites in

February 2000.

CDNs use several factors to decide how to distribute client requests.

For example, to minimize response time, a redirector might select a

server based on its network proximity. In contrast, to improve the over-

all system throughput, it is desirable to evenly balance the load across

a set of servers. Both throughput and response time are improved if the

distribution mechanism takes locality into consideration; that is, it selects
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n FIGURE 9.30 Components in a Content Distribution Network (CDN).

a server that is likely to already have the page being requested in its cache.

The exact combination of factors that should be employed by a CDN is

open to debate. This section considers some of the possibilities.

Mechanisms

As described so far, a redirector is just an abstract function, although it

sounds like what something a router might be asked to do since it logi-

cally forwards a request message much like a router forwards packets. In

fact, there are several mechanisms that can be used to implement redi-

rection. Note that for the purpose of this discussion we assume that each

redirector knows the address of every available server. (From here on, we

drop the “surrogate” qualifier and talk simply in terms of a set of servers.)

In practice, some form of out-of-band communication takes place to keep

this information up-to-date as servers come and go.

First, redirection could be implemented by augmenting DNS to return

different server addresses to clients. For example, when a client asks

to resolve the name www.cnn.com, the DNS server could return the IP

address of a server hosting CNN’s Web pages that is known to have the

lightest load. Alternatively, for a given set of servers, it might just return
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addresses in a round-robin fashion. Note that the granularity of DNS-

based redirection is usually at the level of a site (e.g., cnn.com) rather

than a specific URL (e.g., http://www.cnn.com/2002/WORLD/europe/06/21/

william.birthday/index.html). However, when returning an embedded link,

the server can rewrite the URL, thereby effectively pointing the client at

the most appropriate server for that specific object.

Commercial CDNs essentially use a combination of URL rewriting and

DNS-based redirection. For scalability reasons, the high-level DNS server

first points to a regional-level DNS server, which replies with the actual

server address. In order to respond to changes quickly, the DNS servers

tweak the TTL of the resource records they return to a very short period,

such as 20 seconds. This is necessary so clients don’t cache results and

thus fail to go back to the DNS server for the most recent URL-to-server

mapping.

Another possibility is to use the HTTP redirect feature: The client sends

a request message to a server, which responds with a new (better) server

that the client should contact for the page. Unfortunately, server-based

redirection incurs an additional round-trip time across the Internet, and,

even worse, servers can be vulnerable to being overloaded by the redirec-

tion task itself. Instead, if there is a node close to the client (e.g., a local

Web proxy) that is aware of the available servers, then it can intercept the

request message and instruct the client to instead request the page from

an appropriate server. In this case, either the redirector would need to be

on a choke point so that all requests leaving the site pass through it, or the

client would have to cooperate by explicitly addressing the proxy (as with

a classical, rather than transparent, proxy).

At this point you may be wondering what CDNs have to do with over-

lay networks, and while viewing a CDN as an overlay is a bit of a stretch,

they do share one very important trait in common. Like an overlay node,

a proxy-based redirector makes an application-level routing decision.

Rather than forward a packet based on an address and its knowledge of

the network topology, it forwards HTTP requests based on a URL and its

knowledge of the location and load of a set of servers. Today’s Internet

architecture does not support redirection directly—where by “directly”

we mean the client sends the HTTP request to the redirector, which for-

wards to the destination—so instead redirection is typically implemented

indirectly by having the redirector return the appropriate destination

address and the client contacts the server itself.
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Policies

We now consider some example policies that redirectors might use to

forward requests. Actually, we have already suggested one simple policy—

round-robin. A similar scheme would be to simply select one of the

available servers at random. Both of these approaches do a good job

of spreading the load evenly across the CDN, but they do not do a

particularly good job of lowering the client-perceived response time.

It’s obvious that neither of these two schemes takes network proximity

into consideration, but, just as importantly, they also ignore locality. That

is, requests for the same URL are forwarded to different servers, making

it less likely that the page will be served from the selected server’s in-

memory cache. This forces the server to retrieve the page from its disk, or

possibly even from the backend server. How can a distributed set of redi-

rectors cause requests for the same page to go to the same server (or small

set of servers) without global coordination? The answer is surprisingly

simple: All redirectors use some form of hashing to deterministically map

URLs into a small range of values. The primary benefit of this approach

is that no inter-redirector communication is required to achieve coordi-

nated operation; no matter which redirector receives a URL, the hashing

process produces the same output.

So what makes for a good hashing scheme? The classic modulo hash-

ing scheme—which hashes each URL modulo the number of servers—is

not suitable for this environment. This is because should the number of

servers change, the modulo calculation will result in a diminishing frac-

tion of the pages keeping their same server assignments. While we do not

expect frequent changes in the set of servers, the fact that the addition of

new servers into the set will cause massive reassignment is undesirable.

An alternative is to use the same consistent hashing algorithm dis-

cussed in Section 9.4.2. Specifically, each redirector first hashes every

server into the unit circle. Then, for each URL that arrives, the redirector

also hashes the URL to a value on the unit circle, and the URL is assigned

to the server that lies closest on the circle to its hash value. If a node fails in

this scheme, its load shifts to its neighbors (on the unit circle), so the addi-

tion or removal of a server only causes local changes in request assign-

ments. Note that unlike the peer-to-peer case, where a message is routed

from one node to another in order to find the server whose ID is closest

to the objects, each redirector knows how the set of servers map onto the

unit circle, so they can each, independently, select the “nearest” one.
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This strategy can easily be extended to take server load into account.

Assume the redirector knows the current load of each of the available

servers. This information may not be perfectly up-to-date, but we can

imagine the redirector simply counting how many times it has forwarded

a request to each server in the last few seconds and using this count as

an estimate of that server’s current load. Upon receiving a URL, the redi-

rector hashes the URL plus each of the available servers and sorts the

resulting values. This sorted list effectively defines the order in which the

redirector will consider the available servers. The redirector then walks

down this list until it finds a server whose load is below some threshold.

The benefit of this approach compared to plain consistent hashing is that

server order is different for each URL, so if one server fails its load is dis-

tributed evenly among the other machines. This approach is the basis for

the Cache Array Routing Protocol (CARP) and is shown in pseudocode

below.

SelectServer(URL, S)

for = each server si in server set S

weighti = hash(URL, address(si))

sort weight

for each server sj in decreasing order of weightj

if = Load(sj) < threshold then

return sj

return server with highest weight

As the load increases, this scheme changes from using only the first

server on the sorted list to spreading requests across several servers. Some

pages normally handled by busy servers will also start being handled by

less busy servers. Since this process is based on aggregate server load

rather than the popularity of individual pages, servers hosting some pop-

ular pages may find more servers sharing their load than servers hosting

collectively unpopular pages. In the process, some unpopular pages will

be replicated in the system simply because they happen to be primarily

hosted on busy servers. At the same time, if some pages become extremely

popular, it is conceivable that all of the servers in the system could be

responsible for serving them.

Finally, it is possible to introduce network proximity into the equation

in at least two different ways. The first is to blur the distinction between
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server load and network proximity by monitoring how long a server

takes to respond to requests and using this measurement as the “server

load” parameter in the preceding algorithm. This strategy tends to prefer

nearby/lightly loaded servers over distant/heavily loaded servers. A sec-

ond approach is to factor proximity into the decision at an earlier stage by

limiting the candidate set of servers considered by the above algorithms

(S) to only those that are nearby. The harder problem is deciding which

of the potentially many servers are suitably close. One approach would

be to select only those servers that are available on the same ISP as the

client. A slightly more sophisticated approach would be to look at the map

of autonomous systems produced by BGP and select only those servers

within some number of hops from the client as candidate servers. Find-

ing the right balance between network proximity and server cache locality

is a subject of ongoing research.

9.5 SUMMARY

We have seen two of the most widely used client/server-based application

protocols: SMTP used to exchange electronic mail and HTTP used to walk

the World Wide Web. We have seen how application-to-application com-

munication is driving the creation of new protocol development frame-

works such as SOAP and REST. And we have examined session control

protocols, such as SIP and H.323, which are used to control multimedia

applications such as Voice over IP. In addition to these application proto-

cols, we looked at some critical supporting protocols: the DNS protocol

used by the Domain Naming System and SNMP used to query remote

nodes for the sake of network management. Finally, we looked at emerg-

ing applications—including overlay, peer-to-peer, and content distribu-

tion networks—that blend application processing and packet forwarding

in innovative ways.

Application protocols are a curious lot. In many ways, the traditional

client/server applications are like another layer of transport protocol,

except they have application-specific knowledge built into them. You

could argue that they are just specialized transport protocols, and that

transport protocols get layered on top of each other until producing

the precise service needed by the application. Similarly, the overlay

and peer-to-peer protocols can be viewed as providing an alternative
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routing infrastructure, but, again, one that is tailored for a particular

application’s needs. One sure lesson we draw from this observation is that

designing application-level protocols is really no different than designing

core network protocols, and that the more one understands about the lat-

ter the better they will do designing the former. We also observe that the

systems approach—understanding how functions and components inter-

act to build a complete system—applies at least as much in the design of

applications as in any other aspect of networking.

I
t’s difficult to put a finger on a specific issue in the realm of appli-

cation protocols—the entire field is open as new applications are

invented every day, and the networking needs of these applica-

tions are, well, application dependent. The real challenge to

network designers is to recognize that what applications need

from the network changes over time, and these changes drive

the transport protocols we develop and the functionality we

put into network routers.

Developing new transport protocols is a reasonably

tractable problem. You may not be able to get the IETF

to bless your transport protocol as an equal of TCP or

UDP, but there’s certainly nothing stopping you from

designing the world’s greatest multimedia application

that comes bundled with a new end-to-end protocol

that runs on top of UDP, much like happens with RTP.

WHAT’S NEXT: NEW NETWORK ARCHITECTURE

On the other hand, pushing application-specific

knowledge into the middle of the network—into

the routers—is a much more difficult problem. This is

because, in order to effect a particular application,

any new network service or functionality may need to

be loaded into many, if not all, of the routers in the Inter-

net. Overlay networks provide a way of introducing new

functionality into the network without the cooperation of all

(or even any) of the routers, but in the long run we can expect

that the underlying network architecture will need to change to

accommodate these overlays. We saw this issue with RON—how RON

and BGP route selection interact with each other—and can expect it to

be a general question as overlay networks becomemore prevalent.
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One possibility is that an alternative fixed architecture does not evolve, but

instead the next network architecturewill be highly adaptive. In the limit, rather than

defining an infrastructure for carrying data packets, the network architecture might

allow packets to carry both data and code (or possibly pointers to code) that tell the

router how it should process the packet. Such a network raises a host of issues, not

the least of which is how to enforce security in a world where arbitrary applications

can effectively program routers. Another possibility is that virtualization of networks

becomes the norm, with perhaps some “slices” providing robust, well-understood,

and fully debugged services while others are used for more experimental functions.

This is one direction the research community is currently pursuing.

n FURTHER READING

Our first article provides an interesting perspective on the early design

and implementation of the World Wide Web, written by its inventors

before it had taken the world by storm. The development of DNS is

well described by Mockapetris and Dunlap. Overlays, CDNs, and peer-to-

peer networks have been extensively researched in recent years, and the

last six research papers provide a good place to start understanding the

issues.

n Berners-Lee, T., R. Caillia, A. Luotonen, H. Nielsen, and A. Secret.

The World-Wide Web. Communications of the ACM 37(8), pages

76–82, August 1994.

n Mockapetris, P., and K. Dunlap. Development of the Domain Name

System. Proceedings of the SIGCOMM ’88 Symposium, pages

123–133, August 1988.

n Karger, D. et al. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the World Wide Web.

Proceedings of the ACM Symposium on Theory of Computing, pages

654–663, May 1997.

n Chu, Y., S. Rao, and H. Zhang. A case for End System Multicast.

Proceedings of the ACM SIGMETRICS ’00 Conference, pages 1–12,

June 2000.

n Andersen, D. et al. Resilient overlay networks. Proceedings of the

18th ACM Symposium on Operating Systems Principles (SOSP),

pages 131–145, October 2001.
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n Rowstron, A., and P. Druschel. Storage management and caching

in PAST, a large-scale persistent peer-to-peer storage utility.

Proceedings of the 18th ACM Symposium on Operating Systems

Principles (SOSP), pages 188–201, October 2001.

n Stoica, I. et al. Chord: A scalable peer-to-peer lookup service for

Internet applications. Proceedings of the ACM SIGCOMM

Conference, pages 149–160, August 2001.

n Ratnasamy, S. et al. A scalable content-addressable network.

Proceedings of ACM SIGCOMM ’01, pages 161–172, August 2001.

SMTP was originally defined in RFC 821 [Pos82], and, of course, RFC

822 is RFC 822 [Cro82]. They have been, in IETF terminology, “obso-

leted” by [Kle01] and [Res01], respectively. MIME is defined in a series of

RFCs; the most recent version is defined in RFC 2045 [FB96], with several

additional RFCs filling in details.

Version 1.0 of HTTP is specified in RFC 1945 [BLFF96], and the lat-

est version (1.1) is defined in RFC 2616 [FGM+99]. Mogul [Mog95] made

the case for the persistent connections in HTTP 1.1. There is a wealth of

papers written about web performance, especially web caching. A good

example is a paper by Danzig on web traffic and its implications on the

effectiveness of caching [Dan98]. Roy Fielding’s Ph.D. thesis [Fie00] is the

ultimate reference for REST.

SIP is defined in RFC 3261 [SCJ+02], which contains a helpful tutorial

section as well as the detailed specification of the protocol. As with MIME,

there are many other RFCs that extend the protocol.

There is a wealth of papers on naming, as well as on the related issue

of resource discovery (finding out what resources exist in the first place).

General studies of naming can be found in Terry [Ter86], Comer and

Peterson [CP89], Birrell et al. [BLNS82], Saltzer [Sal78], Shoch [Sho78],

and Watson [Wat81]; attribute-based (descriptive) naming systems are

described in Peterson [Pet88] and Bowman et al. [BPY90]; and resource

discovery is the subject of Bowman et al. [BDMS94].

Network management is a sufficiently large and important field that

the IETF devotes an entire area to it. There are well over 100 RFCs

describing various aspects of SNMP and MIBs. The two key references,

however, are RFC 2578 [MPS99], which defines the structure of man-

agement information for version 2 of SNMP (SNMPv2), and RFC 3416

[Pre02], which defines the protocol operations for SNMPv2. Many of the
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other SNMP/MIB-related RFCs define extensions to the core set of MIB

variables—for example, variables that are specific to a particular net-

work technology or to a particular vendor’s product. Perkins et al. [PM97]

provides a good introduction to SNMP and MIBS.

The National Research Council report on the ossification of the

Internet can be found in [NRC01], and a proposal to use overlay net-

works to introduce disruptive technology was made by Peterson et al.,

Anderson, Culler, and Roscoe [PACR02]. The original case for overrid-

ing BGP routes was made by Savage et al., Collins, Hoffman, Snell, and

Anderson [SCH+99]. The idea of using DNS to load-balance a set of

servers is described in RFC 1794 [Bri95]. A comprehensive treatment of

the issue of web caching versus replicated servers can be found in Rabi-

novich and Spatscheck’s book [RS02]. Wang, Pai, and Peterson explore the

design space for redirectors [WPP02].

Finally, we recommend the following live reference to help keep tabs

on the rapid evolution of the Web and for a wealth of information related

to Web-related standards and history:

n http://www.w3.org/: World Wide Web Consortium.

EXERCISES

1. Discuss how you might rewrite SMTP or HTTP to make use of a

hypothetical general-purpose request/reply protocol. Could an

appropriate analog of persistent connections be moved from the

application layer into such a transport protocol? What other

application tasks might be moved into this protocol?

2. Most Telnet clients can be used to connect to port 25, the SMTP

port, instead of to the Telnet port. Using such a tool, connect to

an SMTP server and send yourself (or someone else, with

permission) some forged email. Then examine the headers for

evidence the message isn’t genuine.

3. What features might be used by (or added to) SMTP and/or a

mail daemon such as sendmail to provide some resistance to

email forgeries as in the previous exercise?

4. Find out how SMTP hosts deal with unknown commands from

the other side, and how in particular this mechanism allows for
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the evolution of the protocol (e.g., to “extended SMTP”). You can

either read the RFC or contact an SMTP server as in Exercise 2,

above, and test its responses to nonexistent commands.

5. As presented in the text, SMTP involves the exchange of several

small messages. In most cases, the server responses do not affect

what the client sends subsequently. The client might thus

implement command pipelining: sending multiple commands in

a single message.

(a) For what SMTP commands does the client need to pay

attention to the server’s responses?

(b) Assume the server reads each client message with gets() or

the equivalent, which reads in a string up to a <LF>. What

would it have to do even to detect that a client had used

command pipelining?

(c) Pipelining is nonetheless known to break with some servers;

find out how a client can negotiate its use.

6. One of the central problems faced by a protocol such as MIME is

the vast number of data formats available. Consult the MIME

RFC to find out how MIME deals with new or system-specific

image and text formats.

7. MIME supports multiple representations of the same content

using the multipart/alternative syntax; for example, text could be

sent as text/plain, text/richtext, and application/postscript. Why do

you think plaintext is supposed to be the first format, even

though implementations might find it easier to place plaintext

after their native format?

8. Consult the MIME RFC to find out how base64 encoding handles

binary data of a length not evenly divisible by three bytes.

9. The POP3 Post Office Protocol only allows a client to retrieve

email, using a password for authentication. Traditionally, to send

email a client would simply send it to its server (using SMTP) and

expect that it be relayed.

(a) Explain why email servers often no longer permit such

relaying from arbitrary clients.

(b) Propose an SMTP option for remote client authentication.

(c) Find out what existing methods are available for addressing

this issue.
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10. In HTTP version 1.0, a server marked the end of a transfer by

closing the connection. Explain why, in terms of the TCP layer,

this was a problem for servers. Find out how HTTP version 1.1

avoids this. How might a general-purpose request/reply protocol

address this?

11. Find out how to configure an HTTP server so as to eliminate the

404 not found message and have a default (and friendlier)

message returned instead. Decide if such a feature is part of the

protocol or part of an implementation or is technically even

permitted by the protocol. (Documentation for the apache HTTP

server can be found at www.apache.org.)

12. Why does the HTTP GET command on page 712,

GET http://www.cs.princeton.edu/index.html HTTP/1.1

contain the name of the server being contacted? Wouldn’t the

server already know its name? Use Telnet, as in Exercise 2, above

to connect to port 80 of an HTTP server and find out what

happens if you leave the host name out.

13. When an HTTP server initiates a close() at its end of a

connection, it must then wait in TCP state FIN WAIT 2 for

the client to close the other end. What mechanism within

the TCP protocol could help an HTTP server deal with

noncooperative or poorly implemented clients that don’t close

from their end? If possible, find out about the programming

interface for this mechanism and indicate how an HTTP server

might apply it.

14. Suppose a very large website wants a mechanism by which

clients access whichever of multiple HTTP servers is “closest” by

some suitable measure.

(a) Discuss developing a mechanism within HTTP for doing this.

(b) Discuss developing a mechanism within DNS for doing this.

Compare the two. Can either approach be made to work without

upgrading the browser?

15. Application protocols such as FTP and SMTP were designed

from scratch, and they seem to work reasonably well. What is it

about Business to Business and Enterprise Application

Integration protocols that calls for a Web Services protocol

framework?
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16. Choose a Web Service with equivalent REST and SOAP interfaces,

such as those offered by Amazon.com. Compare how equivalent

operations are implemented in the two styles.

17. Get the WSDL for some SOAP-style Web Service and choose an

operation. In the messages that implement that operation,

identify the fields.

18. Suppose some receivers in a large conference can receive data at

a significantly higher bandwidth than others. What sorts of things

might be implemented to address this? (Hint: Consider both the

Session Announcement Protocol (SAP) and the possibility of

utilizing third-party “mixers.”)

19. How might you encode audio (or video) data in two packets so

that if one packet is lost, then the resolution is simply reduced to

what would be expected with half the bandwidth? Explain why

this is much more difficult if a JPEG-type encoding is used.

20. Explain the relationship between Uniform Resource Locators

(URLs) and Uniform Resource Identifiers (URIs). Give an example

of a URI that is not a URL.

21. Find out what other features DNS MX records provide in addition

to supplying an alias for a mail server; the latter could, after all,

be provided by a DNS CNAME record. MX records are provided to

support email; would an analogous WEB record be of use in

supporting HTTP?

22. ARP and DNS both depend on caches; ARP cache entry lifetimes

are typically 10 minutes, while DNS cache lifetimes are on the

order of days. Justify this difference. What undesirable

consequences might there be in having too long a DNS cache

entry lifetime?

23. IPv6 simplifies ARP out of existence by allowing hardware

addresses to be part of the IPv6 address. How does this

complicate the job of DNS? How does this affect the problem of

finding your local DNS server?

24. DNS servers also allow reverse lookup; given an IP address

128.112.169.4, it is reversed into a text string 4.169.112.128.in-

addr.arpa and looked up using DNS PTR records (which form a

hierarchy of domains analogous to that for the address domain
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hierarchy). Suppose you want to authenticate the sender of a

packet based on its host name and are confident that the source

IP address is genuine. Explain the insecurity in converting the

source address to a name as above and then comparing this

name to a given list of trusted hosts. (Hint: Whose DNS servers

would you be trusting?)

25. What is the relationship between a domain name (e.g.,

cs.princeton.edu) and an IP subnet number (e.g., 192.12.69.0)?

Do all hosts on the subnet have to be identified by the same

name server? What about reverse lookup, as in the previous

exercise?

26. Suppose a host elects to use a name server not within its

organization for address resolution. When would this result in no

more total traffic, for queries not found in any DNS cache, than

with a local name server? When might this result in a better DNS

cache hit rate and possibly less total traffic?

27. Figure 9.17 shows the hierarchy of name servers. How would you

represent this hierarchy if one name server served multiple

zones? In that setting, how does the name server hierarchy relate

to the zone hierarchy? How do you deal with the fact that each

zone may have multiple name servers?

28. Use the whois utility/service to find out who is in charge of your

site, at least as far as the InterNIC is concerned. Look up your site

both by DNS name and by IP network number; for the latter you

may have to try an alternative whois server (e.g., whois-h

whois.arin.net. . . ). Try princeton.edu and cisco.com as well.

29. Many smaller organizations have their websites maintained by a

third party. How could you use whois to find if this is the case and,

if so, the identity of the third party?

30. One feature of the existing DNS .com hierarchy is that it is

extremely wide.

(a) Propose a more hierarchical reorganization of the .com

hierarchy. What objections might you foresee to your

proposal’s adoption?

(b) What might be some of the consequences of having most

DNS domain names contain four or more levels, versus the

two levels of many existing names?
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31. Suppose, in the other direction, we abandon any pretense at all of

DNS hierarchy and simply move all the .com entries to the root

name server: www.cisco.com would become www.cisco, or

perhaps just cisco. How would this affect root name server traffic

in general? How would this affect such traffic for the specific case

of resolving a name like cisco into a web server address?

32. What DNS cache issues are involved in changing the IP address

of, say, a web server host name? How might these be minimized?

33. Take a suitable DNS-lookup utility (e.g., dig) and disable the

recursive lookup feature (e.g., with +norecursive), so that when

your utility sends a query to a DNS server and that server is

unable to fully answer the request from its own records, the server

sends back the next DNS server in the lookup sequence rather

than automatically forwarding the query to that next server. Then

carry out manually a name lookup such as that in Figure 9.18; try

the host name www.cs.princeton.edu. List each intermediate

name server contacted. You may also need to specify that queries

are for NS records rather than the usual A records.

34. Find out if there is available to you an SNMP node that will

answer queries you send it. If so, locate some SNMP utilities (e.g.,

the ucd-snmp suite) and try the following:

(a) Fetch the entire system group, using something like

snmpwalk nodename public system

Also try the above with 1 in place of system.

(b) Manually walk through the system group, using multiple

SNMP GET-NEXT operations (e.g., using snmpgetnext or

equivalent), retrieving one entry at a time.

35. Using the SNMP device and utilities of the previous exercise,

fetch the tcp group (numerically group 6) or some other group.

Then do something to make some of the group’s counters

change, and fetch the group again to show the change. Try to do

this in such a way that you can be sure your actions were the

cause of the change recorded.

36. What information provided by SNMP might be useful to someone

planning the IP spoofing attack of Exercise 17 in Chapter 5? What

other SNMP information might be considered sensitive?
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37. How would one design a CDN redirection mechanism using only

HTTP 302 redirects or only DNS? What are the limitations of each

approach? Is a combination of the two mechanisms feasible?

38. What problem would a DNS-based redirection mechanism

encounter if it wants to select an appropriate server based on

current load information?

39. Imagine a situation in which multiple CDNs exist and want to

peer with each other (analogous to the way autonomous

systems peer with each at the IP layer) for the purpose of

delivering content to a larger set of end users. For example,

CDN A might serve content on behalf of one set of content

providers and CDN B might serve content on behalf of another

set of content providers, where both A and B have a physical

footprint that allows them to deliver that content to disjoint

sets of end users. Sketch how CDNs A and B can use a

combination of DNS redirection and HTTP 302 redirects to

deliver content from CDN A’s content providers to CDN B’s end

users (and vice versa).

40. Imagine a CDN configured as a caching hierarchy, with end users

accessing content from edge caches, which fetch the content for

a parent cache upon a cache miss, and so on up to a root cache,

which ultimately fetches content from an origin server. What

metrics would guide provisioning decisions to (a) add more

storage capacity to a given cache versus (b) adding an additional

level to the caching hierarchy.

41. A multicast overlay effectively pushes streaming content from a

single source to multiple destinations, with no caching of the

stream at the intermediate nodes. A CDN effectively pulls content

(including videos) down a caching hierarchy, caching it at the

intermediate nodes. Show by example how these two can be

viewed as duals of each other. Explain why a CDN can be viewed

as equivalent to asynchronous multicast. (Hint: Think TiVo.)

42. Consider the following simplified BitTorrent scenario. There is a

swarm of 2n peers and, during the time in question, no peers join

or leave the swarm. It takes a peer 1 unit of time to upload or

download a piece, during which time it can only do one or the
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other. Initially, one peer has the whole file and the others have

nothing.

(a) If the swarm’s target file consists of only 1 piece, what is the

minimum time necessary for all the peers to obtain the file?

Ignore all but upload/download time.

(b) Let x be your answer to the preceding question. If the

swarm’s target file instead consisted of 2 pieces, would it be

possible for all the peers to obtain the file in less than 2x time

units? Why or why not?
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