UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL
 SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation
Reduce the quadratic form $2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+4 x_{1} x_{2}=0$ to canonical form by orthogonal
reduction .Find rank, index, signature and nature

Step 1:

The matrix form is

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0
\end{array}\right]
$$

Step 2:

Characteristic equation, Eigen values, Eigen vectors
$\mathrm{C}_{1}=$ Sum of leading diagonal elements

$$
=2+2+1=5
$$

$\mathrm{C}_{2}=$ Sum of minors of leading diagonal elements

$$
=4
$$

$\mathrm{C}_{3}=|A|$

$$
\begin{array}{rll}
2 & 2 & 0 \\
=\mid 2 & 2 & 0 \mid \\
0 & 0 & 1 \\
=0 &
\end{array}
$$

The characteristic equation is

$$
\lambda^{3}-5 \lambda^{2}+4 \lambda=0
$$

The eigen values are $0,1,4$

The eigen vectors are $(A-\lambda I) X=0$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation

CASE (i)

When $\lambda=0$

$$
\begin{array}{rlll}
2 & 2 & 0 & x_{1} \\
(2 & 2 & 0) & \left(x_{2}\right)=0 \\
0 & 0 & 1 & x_{3}
\end{array}
$$

The cofactor of first row elements are (-2) ie (-1)
00

[^0]The Eigen vector when $\lambda=0$ is (-1)
0

CASE (ii)

When $\lambda=1$

$$
\begin{array}{rlll}
1 & 2 & 0 & x_{1} \\
(2 & 1 & 0) & \left(x_{2}\right)=0 \\
0 & 0 & 0 & x_{3}
\end{array}
$$

00
The cofactor of third row elements are (0) ie (0)

$$
-3 \quad-1
$$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL

The Eigen vector when $\lambda=1$ is (0)
-1

CASE (iii)

When $\lambda=4$
$\left.\begin{array}{rlll}1 & 2 & 0 & x_{1} \\ (2 & 1 & 0\end{array}\right)\binom{x_{2}}{0}=0$
$6 \quad 1$
The cofactor of first row elements are (6) ie (1)
$0 \quad 0$
2
The Eigen vector when $\lambda=4$ is (-2)
1

STEP 3:

To check pair wise orthogonality

$$
\left.\begin{array}{c}
X_{1}^{T} X_{2}=\left(\begin{array}{ccc}
2 & -2 & 0
\end{array}\right)\binom{0}{-1}=0 \\
1 \\
X_{2}^{T} X_{3}=\left(\begin{array}{llc}
0 & 0 & -1
\end{array}\right)(1)=0 \\
0
\end{array}\right] \begin{gathered}
2 \\
X_{3}^{T} X_{1}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
-2)=0
\end{array}\right.
\end{gathered}
$$

STEP 4:

To find normalized vector

Reduction of quadratic form to canonical form by orthogonal transformation

Eigen vector	$\mathrm{l}(\mathrm{x})=\sqrt{\overline{x_{1}^{2}+x^{2}+x^{2}}{ }_{3}}$	$\begin{array}{r} x_{1} / l\left(x_{1}\right) \\ \text { Normalized vector }=\left(x_{2} / l\left(x_{2}\right)\right) \\ x_{3} / l\left(x_{3}\right) \end{array}$
$\begin{gathered} 1 \\ (-1) \\ 0 \end{gathered}$	$\sqrt{1+1+0}=\sqrt{2}$	$\begin{aligned} & \mathbf{1}^{1 / / 2} \sqrt{2}^{\|-1 / \sqrt{2}\|} \\ & \mathrm{h} 0 \end{aligned}$
$\begin{gathered} 0 \\ (0) \\ -1 \end{gathered}$	$\sqrt{0+0+1}=\sqrt{1}$	$\begin{gathered} 0 \\ (0) \\ -1 \end{gathered}$
$\begin{gathered} 1 \\ (1) \\ 0 \end{gathered}$	$\sqrt{1+1+0}=\sqrt{2}$	$\left.\begin{array}{c} 1 / \sqrt{2} \\ \mathbf{l}_{1} / \sqrt{2} \\ \mathbf{h} 0 \end{array}\right)$

STEP 5:

Normalized modal matrix

$$
\begin{aligned}
& \mathrm{N}=\left|\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right| \\
& {\left[\begin{array}{ccc}
0 & -1 & 0
\end{array}\right]} \\
& \left.N^{\mathrm{T}}=\left\lvert\, \begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & -1 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1
\end{array}\right.\right]
\end{aligned}
$$

STEP 6:

$$
\mathrm{NN}^{\mathrm{T}}=\mathrm{N}^{\mathrm{T}} \mathrm{~N}=\mathrm{I}
$$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation

STEP 7:

To find diagonalyze matrix

$$
\begin{aligned}
& \mathrm{N}^{\mathrm{T}} \mathrm{AN}=\mathrm{D} \\
& \left.\mathrm{~N}^{\mathrm{T}} \mathrm{~A}=\begin{array}{cccrll}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 & 2 & 2 & 0 \\
\mathbf{1} & 0 & -1 & (2 & 2 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
4 / \sqrt{2} & 4 / \sqrt{2} & 0
\end{array}\right) \\
& \left.\mathrm{N}^{\mathrm{T}} \mathrm{AN}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 / \sqrt{2} & 0 & 1 / \sqrt{ } z \\
0 & 0 & -1 & \mathbf{1} \\
4 / \sqrt{2} & 4 / \overline{\sqrt{2}} & 0
\end{array}\right) \begin{array}{c}
\\
-1 / \sqrt{2}
\end{array}\right) 0 \begin{array}{c}
1 / \sqrt{z} \\
\mathrm{~h} \\
0
\end{array} \\
& \left.=\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& =\mathrm{D}
\end{aligned}
$$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation

Step 8:

$Y^{T} \mathrm{DY}=0$
$0 y_{1}^{2}+y_{2}^{2}+4 y_{3}^{2}=0$
The index $\mathrm{p}=2$
Rank r=2
Signature $\mathrm{s}=2 \mathrm{p}-\mathrm{r}=2$
The nature is semi positive

[^0]: 1

