Reduction of quadratic form to canonical form by orthogonal transformation

Reduce the quadratic form $2x^2 + 2x^2 + x^2 + 4x_1x_2 = 0$ to canonical form by orthogonal reduction .Find rank, index, signature and nature

Step 1:

The matrix form is

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Step 2:

Characteristic equation, Eigen values, Eigen vectors

 C_1 =Sum of leading diagonal elements

$$=2+2+1=5$$

C₂= Sum of minors of leading diagonal elements

=4

 $C_3=|A|$

$$\begin{array}{ccccc}
2 & 2 & 0 \\
= & 2 & 0 \\
0 & 0 & 1
\end{array}$$

=0

The characteristic equation is

$$\lambda^3 - 5\lambda^2 + 4\lambda = 0$$

The eigen values are 0,1,4

The eigen vectors are $(A - \lambda I)X=0$

Reduction of quadratic form to canonical form by orthogonal transformation

$$\begin{bmatrix} 2 & 2 & 0 & 1 & 0 & 0 & x_1 \\ [(2 & 2 & 0) - \lambda & (0 & 1 & 0)] & (x_2) & = 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & x_3 \end{bmatrix}$$

$$\begin{pmatrix} 2-\lambda & 2 & 0 & x_1 \\ (2 & 2-\lambda & 0) & (x_2) = 0 \\ 0 & 0 & 1-\lambda & x_3 \end{pmatrix}$$

$$\begin{array}{cccc}
2 & 2 & 0 & x_1 \\
(2 & 2 & 0) & (x_2) &= 0 \\
0 & 0 & 1 & x_3
\end{array}$$

CASE (i)

When $\lambda = 0$

$$\begin{array}{ccccc}
2 & 2 & 0 & x_1 \\
(2 & 2 & 0) & (x_2) &= 0 \\
0 & 0 & 1 & x_3
\end{array}$$

The cofactor of first row elements are $\begin{pmatrix} 2 & 1 \\ (-2) & (-1) \\ 0 & 0 \end{pmatrix}$

The Eigen vector when $\lambda = 0$ is $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

CASE (ii)

When $\lambda = 1$

$$\begin{array}{cccc}
1 & 2 & 0 & x_1 \\
(2 & 1 & 0) & (x_2) &= 0 \\
0 & 0 & 0 & x_3
\end{array}$$

The cofactor of third row elements are $\begin{pmatrix} 0 & 0 \\ 0 \end{pmatrix}$ ie $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ -3 & -1

Reduction of quadratic form to canonical form by orthogonal transformation

0

The Eigen vector when $\lambda = 1$ is (0)

-1

CASE (iii)

When $\lambda = 4$

$$\begin{array}{cccc}
1 & 2 & 0 & x_1 \\
(2 & 1 & 0) & (x_2) &= 0 \\
0 & 0 & 0 & x_3
\end{array}$$

The cofactor of first row elements are $\begin{pmatrix} 6 & 1 \\ 6 \end{pmatrix}$ ie $\begin{pmatrix} 1 \\ 0 & 0 \end{pmatrix}$

The Eigen vector when $\lambda = 4$ is (-2)

STEP 3:

To check pair wise orthogonality

$$X_1^T X_2 = (2 \quad -2 \quad 0) \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$

$$X_2^T X_3 = \begin{pmatrix} 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0$$

$$X_3^T X_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 0$$

STEP 4:

To find normalized vector

Reduction of quadratic form to canonical form by orthogonal transformation

Eigen vector	$1(x) = \sqrt{x_1^2 + x_2^2 + x_3^2}$	$x_1/l(x_1)$ Normalized vector =($x_2/l(x_2)$) $x_3/l(x_3)$
$\begin{pmatrix} 1 \\ (-1) \\ 0 \end{pmatrix}$	$\sqrt{1+1+0} = \sqrt{2}$	$ \begin{array}{c c} 1^{1/} \nearrow 2 \\ -1/\sqrt{2} \\ h & 0 \end{array} $
0 (0) -1	$\sqrt{0+0+1} = \sqrt{1}$	0 (0) -1
1 (1) 0	$\sqrt{1+1+0} = \sqrt{2}$	$^{1}/\sqrt{2}$ l_{1} $\sqrt{2}$ h_{0}

STEP 5:

Normalized modal matrix

$$N = \begin{vmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{vmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \end{bmatrix}$$

$$N^{T} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & -1\\ 1/\sqrt{2} & 1/\sqrt{2} & 1 \end{bmatrix}$$

STEP 6:

$$NN^T = N^TN = I$$

Reduction of quadratic form to canonical form by orthogonal transformation

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & -1/\sqrt{2} & 0 & \mathbf{1} \\
0 & 0 & -1 & \mathbf{1}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
-1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
-1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1 & 0
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1 & 0
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

$$\mathbf{N}^{T}\mathbf{N} = \mathbf{1} \begin{bmatrix}
1/\sqrt{2} & 0 & 1/\sqrt{2} \\
0 & 1/\sqrt{2} & 1
\end{bmatrix}$$

STEP 7:

To find diagonalyze matrix

$$N^{T}AN = D$$

$$\begin{array}{ccc}
0 & 0 & 0 \\
= (0 & 1 & 0) \\
0 & 0 & 4
\end{array}$$

= D

Reduction of quadratic form to canonical form by orthogonal transformation

Step 8:

$$Y^TDY = 0$$

$$0y_1^2 + y_2^2 + 4y_3^2 = 0$$

The index p=2

Rank r=2

Signature s=2p-r =2

The nature is semi positive