NODES ANALYSIS

Analysis using KCL to solve for voltages at each common node of the network and hence determine the currents though and voltages across each elements of the network.

- Determine the number of common nodes and reference node within the network
- Assign current and its direction to each distinct branch of the nodes in the network
- Apply KCL at each of the common nodes in the network

Solve Equation

- Solve the resulting simultaneous linear equation for the node voltage
- Determine the currents through and voltages across each elements in the network

EXERCISE

Example 1:

Find the current flow through each resistor using node analysis for the circuit below.

REMEMBER THE STEPS EARLIER??

Apply KCL at each of the

common nodes in the network

KCL: $11+12=13$

$$
\begin{array}{ll}
\frac{(10-\mathrm{Va})}{10}+\frac{(20-\mathrm{Va})}{20}=\frac{\mathrm{Va}}{40} & \\
1-\frac{\mathrm{Va}}{10}+1-\frac{\mathrm{Va}}{20}=\frac{\mathrm{Va}}{40} & \mathrm{I}_{1}=\frac{(10-11.428)}{10}=-0.143 \mathrm{~A} \\
\frac{\mathrm{Va}}{40}+\frac{\mathrm{Va}}{10}+\frac{\mathrm{Va}}{20}=2 & \mathrm{I}_{2}=\frac{(20-11.428)}{20}=0.429 \mathrm{~A} \\
\mathrm{Va}\left(\frac{1}{40}+\frac{1}{10}+\frac{1}{20}\right)=2 & \mathrm{I}_{3}=\frac{11.428}{40}=0.286 \mathrm{~V} \\
\mathrm{Va}\left(\frac{7}{40}\right)=2 & \\
\mathrm{Va}=11.428 \mathrm{~V} &
\end{array}
$$

Find the current flow through each resistor using node analysis for the circuit below.

$$
\begin{array}{ll}
\frac{(40-\mathrm{Va})}{5 \mathrm{k}}=\frac{(\mathrm{Va}-(-55))}{3 \mathrm{k}}+\frac{\mathrm{Va}}{6 \mathrm{k}} & \\
\frac{40}{6 \mathrm{k}}-\frac{\mathrm{Va}}{6 \mathrm{k}}=\frac{\mathrm{Va}}{3 \mathrm{k}}+\frac{55}{3 \mathrm{k}}+\frac{\mathrm{Va}}{6 \mathrm{k}} & \mathrm{I}_{1}=\frac{(40-(-14.757))}{5 \mathrm{k}}=10.95 \mathrm{~mA} \\
\frac{(-\mathrm{Va})}{5 \mathrm{k}}-\frac{\mathrm{Va}}{3 \mathrm{k}}-\frac{\mathrm{Va}}{6 \mathrm{k}}=\frac{55}{3 \mathrm{k}}-\frac{40}{5 \mathrm{k}} & \mathrm{I}_{2}=\frac{(-14.757+55)}{3 \mathrm{k}}=13.41 \mathrm{~mA} \\
-\mathrm{Va}\left(\frac{1}{5 \mathrm{k}}+\frac{1}{3 \mathrm{k}}+\frac{1}{6 \mathrm{k}}=\frac{55}{3 \mathrm{k}}-\frac{40}{5 \mathrm{k}}\right. & \mathrm{I}_{3}=\frac{(-14.757)}{6 \mathrm{k}}=-2.46 \mathrm{~mA} \\
-\mathrm{Va}\left(700 \times 10^{-6}\right)=10.33 \times 10^{-3} & \\
\mathrm{Va}=-14.757 \mathrm{~V} &
\end{array}
$$

