31 INTRODUCTION

Quantum Mechanics is the theoret;
. oretic asi . A
the nature and behavior of matter g eneal basis of Modern Physics that explains

Classical Physi el rgy on the atomic and subatomic level.

¢ ysics explains matter and -

e familiar to 1 e : energy at the macroscopic level of the
scale familiar to human experience, includi : . .
At the end of the 19th century ob ’ ing the behavior of astronomical bodies.

' 1 Iy observers discovered phenomena in both the large
and the small matters that Classical Physics could not explain

Quantum Mechanics (also called wave mechanics) dlcjaals with the investigation
of the behavior of micro-particles. Most advances that have taken place in Solid
State Physics, Atomic Physi : P
Quamunz Me;hanics 1ysics and Nuclear Physics are based on the principles of

There are five main ideas represented in quantum theory. They are

e Energy is not continuous. ‘ ,

e The elementary particles behave both like particles and like waves.

° The' movement of these particles is inherently random. =

e It is physically impossible to know both the position and the
momentum of a particle at the same time with same accuracy.

e The atomic world is similar to our world which we live in.

We already know the basic concepts of particles and waves. A particle 1s
described by its mass, velocity, momentum and energy. The spread out disturbance
of the particle is named as wave and the wave can be described by its amplitude,
frequency, wavelength, intensity and phase. In fact the electromagnetic radiation
behaves as both particle and wave. Some of the phenomena like photoelectric
effect, black body radiation, Compton’s theory, Zeemen éffect etc. are explalqed
based on the particle (photon) nature of light. Hence radiation or light behaves like

a wave as well as a particle. This character wave-particle of light radiation results
diations never possess both particle and

the dual nature of light. However light ra : ticle
wave characters simultaneously. Based on the above concept in 1924 Louis Victor
due de Broglie, a French scientist proposed that particle like electrons, protons etc.
’ otion. Based on the de Broglie’s

“should possess wave like properties when in motio! :
wave ccf)ncept in 1926, Schrodinger a German scientist derived two forms of wave

equations, namely time-dependent and time-independent wave equation.
The Quantum Theory of black body radiation, Compton effept, de-_Bro'glie
waves, Schrodinger wave equations, yarious microscopes and their applications

are explained in this unit.

32 BLACK BODY RADIATION
' which absorbs all the thermal radiations

lack body is on€ W : 0
inciden?ugggf?f tanbdaii does not reflect light. T here1 is 1?12 I:Zlerfect black body exist.
An object coated with 2 black pigment 1S pearly a b ack body.
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Let us construct a classic experimental model as shown in Fig, 3.1, Here |
hollow copper sphere is coated with lamp black on its inner wall, A fine hole i;
made for radiations to enter into the sphere, '

Now the radiations are made to pass through the hole. The f‘ollowi,,g
phenomenon takes place,

Fig. 3.1

The radiation undergoes multiple reflections.
The radiation is completely absorbed in the walls of the cavity.
None of the radiation escapes.
The radiation heats the cavity walls.
®  Atoms in the walls of the cavity will vibrate.

When this black body is placed in a temperature bath of fixed temperature the
atoms then re-radiate energy. The heat radiation will come out only through the
hole in the sphere and not through the walls of the sphere. Hence we conclude that
the radiations are emitted only from the inner surface of the sphere. The emission
from a black body depends only on its temperaturc and it is independent of the
material, shape and size of the body.

Therefore a perfect black body is a perfect absorber as well as a perfect
radiator of all wavelengths.

3.2.1 Black Body Radiation Spectrum

The black body is allowed to emit radiations at different temperatures and
the radiation curves are drawn (Fig.3.2). From these curves following results were

observed.

e The black body emits radiation ranging from lower wavelength t0

higher wavelength. ,
e At a particular temperature the spectral radiation Ej is a maximum at @
particular wavelength called peak wavelength A,,. This means that 85
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the temperature is raised the cavity emits more and more the radiation
of the shorter wavelengths,

The encrgy density E, incrcases with increase in wavelength and
reacts a maximum and then decreases with increase in wavelength.
For all the wavelengths an increase in temperature causes increase in
energy.

The total energy emitted at any particular temperature can be
calculated from the area under that particular curve.
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 Wavelength A

Fig. 3.2

3.3 PLANCK’S QUANTUM THEORY OF BLACK BOD

RADIATION

In 1900, Planck introduced entirely new ideas to explain the distribution of
energy among the various wavelengths of the cavity radiation.

Planck derived an expression for the energy distribution with the following
assumptions.

1. He assumed that the atoms of the walls of the cavity radiator behave as
oscillators, each with a characteristic frequency of oscillation.

2. The frequency of radiation emitted by an oscillator is the same as that
of the frequency of its vibration of the radiator.

3.

An oscillator can have only discrete energies given by
E =nhv
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Where v is the frequency of the oscillator, h is a c(onslunl‘ klnown "
‘ i integer as quantum number, 'y,
an integer known as q i
Planck’s constant and n is ¢ gl A
means that the oscillator can have only energics hv, 2hv, 3hv gpq No
" energy in between,

4. The oscillators do not emit or absorb encrgy c.ontmuous'ly but only i,
| ‘jumps’ as shown in Fig. 3.3. That is an oscillator emits or absorbyg
packets of energy, each packet carrying an amount of energy hy,

B rthv =
T 35 Shy n=3
? >R 2hy n="2
i E by n=1
0 0 n=_0

Fig. 3.3

Let us calculate the average energy of Planck’s oscill

ator of frequency v. The
probability that an oscillator

has the energy hy.at temperature T is given by the

Boltzmann factor exp ( K-}Ilg\iFJ

Let N, Ny, N2, N3 ... N
hv,2hv, 3 hv..r hy respectively,

» Where K is Boltzmann constant.,

r be the number of oscillators having energics 0,

Then we have N, = Noe E/KeT
The total number of oscillators,

N=N0+N1+N2+N3+....+N

r

N = ~E/KgT | -2E/K.T  _

No [1+e B! 1 e 8" Y'a 3E/KBT+M+e—rE/KBT]
Weknowthat1+x+x2+x3+ =L
ailigag g XX =%




—‘%lll
—lll =2 /ll

E, =N, 0)+(N 5T hv) + (N, e T 2hv) + (Nge KT 3 hy) +

=hv. -hv —2hv
E; =N, hv (1+2e"" + 3eFT +....)
We know 1 +2x +3x2 + ... +rxI1 = L 5 -
(1-x)
_ —hv/KgT 1 '
Er =Nge e 'hv{(,l_e—hv/KBT Y

The average energy of an oscillator E = EWT is obtained by dividing eqn. (2)

by eqn. (1)
E - e—hV/KBT hv
- 1_ e—hV/KBT
= hv : '
E =-eT/KB-T—_—1 REEIETITS LN TS PIY (3)

The number of oscillators present/unit volume in the frequency range of v and v+
dv is given by '
81v2 _
N= 3 dy TR TR eI W SRS SRR AT 4)
The energy density of radiation p,dv in the frequency range v to v+dv

Number of oscillators present/unit volume Average energy
Py =1. ] X )
in the frequency interval dv of the oscillator |

2
p,dv = Sn;/ dv x E
c
8rhv® 1 _
p,dv = 3 ket _ 1dv TR, I ) ®))

Equation (5) is known as Planck’s equation for black body radlatlon

Planck’s radiation law in terms of wavelength (A)
The frequency is given by v =% o ERRRG Rl ;....(6) '

: Differentiating we get dv = 7:;— dA
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Substituting the values of v and dv in RHS of equation (5) we get,

. 8nhcd (¢ 1
The energy density p,dA = 3 (kz J dA (ehc/KKBT T J

8nhc 1
P = A5 | gMe/iKeT

Equation (8) represents the Pla
This law has good agr

derive the Stefan — Bo|
Jean’s law.

3.3.1

Wein’s Displacement Law

Wein’s displacement Jaw holds good only for shorter Wavelength region of
the black body radiation,

The Planck’g law is

8nhc 1
Pr= 25 [ehc/AKBT _1]

If A is Jess %will be greater, . ghc/ikgT >>

Then ehc/kKBT -1 = ehc/lKBT

Planck’s | = _Srhe
§law becomeg Py A (ST
(or) Pr = 8rhc A-Sg-he/ikgT
PO e )
Where Ci and Cy are constants giyep by C, = 8nhc ang C, = ':i
Equatiop (9) is the Wein’g dlsplaccment law i

~Jean’g law



_8nhc 1
=705 TS

. | . x2 3
If‘x* is small then @* =14+ x+2— bl g ...

2|

Here °x” is small hence neglecting the higher order terms e* =1+ x

ghe/AkgT _ 4 hc
AKgT

|

The Planck’s law becomes

___8nhc 1

A° 1+——h—c-——1
AKgT

P

_ 8nhoAKgT
hc®
1 BTCKBT
vy it e il bk

Pa

Pa

Equation (10) is the Rayleigh-Jean’s law.
34  CHARACTERISTICS OF PHOTON

(1) Max Planck introduced the concepts that emission or absorption of
electromagnetic radiation takes place as discrete quanta or tiny discrete
packets called ‘photons’ each having an energy hv where h is the
Planck’s constant and v is the frequency of radiation.

(i) Photons are not affected by electric and magnetic field and they are
electrically neutral.

(iii)Mass of the photon m = h/cA and momentum of the photon P = h/A
since P = mc. | ' |

(iv) Velocity of the photon is 3 x 10° m/sec and it is equal to the Ve'locity of
light, b b

3.5 COMPTON EFFECT AND COMPTON SHIFT

-.,In 1921 A. H. Compton explained the behavior of the mono'chrbmatic‘
radiation scattered by a substance on the basis of quantum theory of radiation..
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When a monochromatic beam of x-rays is scattered by a substance, the
scattered x-rays contain radiation not only of the same wavqle{lgth as that of
unmodified primary radiation but also the modified radlljatlon of long,
wavelength. This is called ‘Compton effect’. The difference between SCattere,
wavelengths is called ‘Compton shift’.

Wh(.‘%l a photon of enerl;-;y ‘hy’ collides with an electron of Etl sczttelrler at reg;
the photon gives its energy to the electron. Thercfore the sca}tl ered p Ogon wil]
have lesser energy (or) lower frequency (or) higher .wavelengt .comp.a;re 10 the
wavelength of incident photon. Since the electron gains energy, it recolls Wlth the
velocity ‘v’. This effect is called Compton effect and the shift in wavelength is
called Compton shift. Thus as a result of Cc.).r.npton gcattermg we get (i)
unmodified radiations (ii) modified radiations and (1i1) a recpll electron.

The Classical electromagnetic theory failed to explain thp presence of the
modified radiation. Compton satisfactorily explained the modified radiations o
the basis of quantum theory.

According to Compton the primary x-ray beam is made up of photons of
energy hv, where h is the Planck’s constant and v is the frequency of primary X-Tay
radiation. The photons travel with velocity of light and possess momentum given
by hv/c. According to the Classical theory radiations exerts pressure and possess
momentum P= E/c where E is the energy of the radiation and c is the velocity of
light. Now for a photon energy E= hv so that the momentum of the photon P=hvrc,

3.6 THEORY OF COMPTON EFFECT
Principle .

~In Compton scattering the collision between a photon and an electron s
conSJdered.. Then by applying the laws of conservation of energy and momentun,
the expression for Compton wavelength is derived.

Assumptions

i.  The collision occurs between th

: _ ¢ photon and an electron in the
Scattering material,

1. The electron is free

4. The scattered Photon moves with an energy hv' at

momentum p hy'
=hv'/c at g ar
Let yg I angle 8 with respect o e S
collision progq l ¢ ener pect fo the original direction.

i g Mmomentum Components before and afte
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Scattered photon !
Incident photon Emhyt P==
_ e
E=hv }P = O

Target electron
E —_ mO C 2

Recoil electron

E'=mc?
P'=mv
Fig. 3.4
Energy befofe collision
(i) Energy of the incident photon = hv
(ii) Energy of the electron at rest = m002
Where ‘m,’ is the rest mass of the electron.
Total energy before Collision = hv+ mec? (1)
Energy after collision
(i) Energy of the scattered photon = hv'
= mc?

(ii) Energy of the recoil electron =
Where ‘m’ is the mass of the electron which is moving with velocity ‘c’

Total energy after Collision = hv'+me® ... )
According to the law of conservation of energy,
Total energy before collision = Total energy after collision
hv+myc? =hv'+me> L 3)

Calculations of momentum (both X-component .and Y-component) before
and after collisions are represented pictorially as shown in Fig, 3.5.

X-component of momentum before collision
hv

(i) X-component momentum of the incident photon = —
c
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(i) X-component momentum of the electron at rest = 0

57 Y hy
Total X-component of momentum before collision = V_

PR )
X-component of momentum after collision
; hy'
(1) X-component momentum of the scattered photon = P cos9
(1) X-component momentum of the recoil electron = mvcosg

es - :hv'
Total X-component of momentum after collision = — cos6+my C0s ¢ ...(5)
c

According to the law of conservation of momentum

X component of momentum before collision = X component of momentum
after collision

hv  hy'
— =——CosB+mvcos¢
c

c T g cosé+mveosy ((?)
E=hv P'= %'
Scattered photon
e ‘T“;
v
- 1 — Sin 8
Incident photon O 3 % ki b
vwwwwl;v# = X
E=hy P=2Y b mvcosq |
~mv sin ¢
-Y
Recoﬂ electron
E'=m¢2
P’ =my
Fig. 3.5
Y-Component of momentum before collision
(i) Y-component momentum of the incident photon = ()
(ii) Y-component Momentum of the electrop atrest=(Q.
Total Y-component of momentum before collision = 0 b (7
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ent of momentum after collision

y-compon
(i) Y-component momentum of tlie scattered photon = _h_‘i: sin®
(ii) Y-component momentum of the recoil electron = —Cmv sing
Total y-component of momentum after collision = h—:— sin-mvsing .....(8)
According to the law of conservation of momentum
Y component of momentum before collision = Y component of momentum
after ;:ollision |
.-.O=h—c\:—'sin9—mvsin¢ S 9)

Equation (6) can be written as

L cos=mv Cos¢
c C g
(or) mcvcosd =h(v-v'cos®) (10)
Equation (9) can be written as (
..... 1)

mcv sing =hv'sin®

Squaring and adding ecjuations (10) and (11) we get il
m2c2v2(cos? ¢ + sin? ¢) = h°[v? = oy v'cosB-+ (V') cos? 8] +h(v)"sin 0

(v")? [cos® 8+ sin20] =h?(v'y’" then

Here cos? ¢ +sin? =1 and h”
m2c?v? = hz[v2—2vv'cose+(v')2] ..... (12)
' Equation (3) can be written as

mc2 = m002 +hv ~v']

Squaring on both sides we get .
(2
m2c4 =m2 ¢* +2hmg ¢” (v _yyeny2-2vvEyFl )

Subtracti tion (12) from equation (13) we obtain

Taequiion ) 2h2vy'(1-C0S8) .o (14)

% 2yttt

m 02 (C2—V2)=mg C4 +2hm0 c (V"'V )

‘m _ From the theory of relativity ihe relativistic formula for the variation of
* With the velocity of the electron is given by,
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m
m = —2 -
Vv
\/1"‘2‘
C .
2 2 .2
m 2 mo C
. . 2 = 0 =
Squaring on both sides we get m® = ———V2 (or) m 2.
1-=
C .
' 2
o m@-v) = met (s

In order to make this equation similar to LHS of equation (14) multiply it
by c2 on both sides.

m?c?(c? —v?)= m? ¢* P, (16)

Equating equations (16) and (14) we get
mg ¢ = m3 c* +2hmyc2(v —v') = 2h2yv' (1-cos#)

or  2hmec?(v-v')=2h?vv' (1-cos6)

—-v' h
or ¥ \" = 5 (1-cos8)
\A% mgC
v v h
or T = 5 (1-cos0)
A\AY \AY moC
1 1
or —_——— = _(1-
v 3 5 (1-cos @)

Multiplying both sides by ‘¢’ then

c ¢ he (4 !
vy - —C0s0)

-----

——

: C C
Since A== '= ' i
A . and A y' > Ve can write equation (17) ag,

Al e (1-cos )
myC

Here %and A" are the wavelensths inci ‘
of the .
Change in wavelength : cldent and scattered photon

h ':i:
MmgyC (1 COSG) s I U . SR SR (l )




wavelength nor or the scattering material, but depends only on the angle of
incidence.

Equation (18) represents the shift in wavelength, i.e., Compton shift which
is independent of the incident radiation as well as the nature of the scattering
substance. Thus, the shift in wavelength or Compton shift purely depends on the
angle of scattering.

Case (i) When 6=0; AA=0 there is no scattering of photon along the

incident radiation.

Case (ii) When 6= I D AA= _h
2 m,C
6.625x 107>

(9.11x1073") (3% 10%)
A A =0.02424A

This is called Compton wavelength.

Case (iii) When 6=mn; AA = 20
MG

A X =0.04848A

AAis maximum value at 0=m and is equal to the twice the Compton
wavelength.

3.7  EXPERIMENTAL VERIFICATION OF COMPTON EFFECT

Compton experiment established the validity of Compton’s theory as well as
the quantum theory of radiation. It also provides a good check of the particle
concepts of photon.

X-rays of monochromatic wavelength ‘A’ is produced from an X-ray
Coolidge tube and is made to pass through the slits Sy and Sz as shown in Fig. 3.6.
These X-rays are made to fall on the scattering element. The scattered N-rays are
received with the help of the Bragg’s spectrometer and the scattered wavelength is
measured.

The experiment is repeated for various scattering angles and the scattered
wavelengths are measured. The experimental results are plotted as shown in
Fig. 3.7.
" InFig. 3.7 when the scattering angle 0 = 0° the scattered radiation peak will
be the same as that of the incident radiation Peak-A. Now when the seattering
angle is increased for one incident radiation of wavelength () we get two
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scattered Peaks-A and B. Here the Peak-A is found to be of same “’{“"elcngth "
that of the incident wavelength and the Peak-B is of greater wavelength thay th;
incident radiation.

Coolidge tube Bragg spectrometer

-...\
~

Scattered X-m_yi Q

- \
*

o

\J ‘

<\

/(. aiaiel Skt SN - ____:
!

- Scattenng
substance ¢
+
,* Unscattered:
S1 S, =" Xerays
X-ray source

A
For g =180°
z s P
= - - N\ L,
g ks /?g\,. !\\
= Al |
r AN
»—a/ : L
\\.__h-
Scattered b difference ip Wavelength (AA) of the two
angle

. \_‘ —I
ase in scatterns
At 6:900

the
Wavelength of o Wavelength of the unmodified |jpe g 0.708 A whereas 1’

e Modified Jipne ; .
which has good 5 b Ine 15 0.730A. The change ; 220

m : ; n 4 OO .0‘-“‘
called Comptonv% aeht with the theoretica] value 0.%)(?24”n ?}E:lxzifglgwm "

avelengty, o
~18th and the shift in Wavelength ig called Compton shift
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3.8 DUAL NATURE OF RADIATION AND MATTER

In 1924, Louis Victor due de Broglie a French scientist proposed that light
waves behaves sometimes as particles and some other times behaves as waves. ‘
Hence the material particles like atoms, molecules, electrons, protons or neutrons
behave as waves are known as matter waves or de Broglie waves. ThlS concept of
particle-wave duahty i1s called De-Broglie hypothe31s

Matter waves or de-Broglie waves

The waves associated with moving material particles are called De-Broglie
waves. . | |

3.8.1 de-Broglie wnvelength

According to_Einstein’s mass- -energy relation the energy of the partlcle 18
crnen by, -

E = mc? ', v‘ - S -(1)
Where m is the mass of the partlcle and cis the Veloc1ty of hght
Equation (1) corresponds to the particle nature. : : A
According to Planck’s theory of radiation the energy_ of the photon is given
by | o E ,

E=hv . )

~ Where h is the Planck’s constant and Vv 1s the frequency of radlatlon wlnch |
is equal to c/A.

Equation (2) corresponds to the wave nature.

From equations (1) and (2) we get

hy =mc2 Bt el (3)
c 2
h—=
> = me
A= L
mc
A = % .(4)

Eqn (4) represents the de-Broglie wavelength for a photon of momentum p.

de-Broghe suggested that equatlon (4) ‘can also be apphcd for matenal
particles, : ‘
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\ ‘ i “v'i -elocity of the part
If 'm" is the mass of the particle and ‘v’ 1s thde v glozllti); Wavele%ao?}llde 5
the momentum of the particle p = mv. In general the de Bro g

h

ke )
myv

3.8.2 de-Broglie Wavelength of an electron

If an electron of mass ‘m’ and charge ‘e’ is accel-erated by- a voltage v thep
the work done on the electron to obtain the velocity ‘v’ is eV. This energy Must e

v 1 .2
equal to the kinetic energy Emv

=1 2
eV > mv
Multiplying by ‘m’ on both sides we get
2 meV = m2v2
or mMv=Y2meV . ol v i e gels (6)
Substituting equation (6) in (5) we get

de-Broglie wavelength of an electron

he = -1 (7)
e m PR

We know that the rest mass of the electron m = 9.11 x 107" kg, Planck’s
constanth = 6.62 x 10 J/sec

: and the electronic charge e = 1.602 x 107 C then
the above equation (7) can be written as

12.2
e = LA _ ®

3.83 de-Broglie Wwavelength in terms of kinetic energy

We know that the kinetic energy
Eaclidd
=—myv

Multiplying by ‘m’ on both sides we get

1
Em=_m2,2
2 v

OF “spamby? ' 2Em

Substituting €qn.(9) in (5) v AR



de-Broglic wavelength

h

\/sz .....
30 PROPERTIES OF MATTER WAVES

. Greater the mass of the particle smaller will be the wavelength of the matter
waves.

Matter waves are not electromagnetic waves.
Matter waves can travel faster than light.

310 G.P. THOMSON EXPERIMENT

e v

When material particle have a wave nature then they are expected to show
the interference and diffraction effects. In 1928 G.P. Thomson demonstrated that z
beam of electrons does suffer diffraction. G.P. Thomson’s apparatus for the
diffraction of electron is shown Fig. 3.8.

The whole Thomson’s apparatus is highly evacuated. The electrons are
emitted by the cathode C and accelerated through a high positive potential given to
the anode. Then the accelerated electron beam is passed through the slits and falls
on 2 gold foil F of thickness 10®m. The electrons which are passing through the
gold foil are received on a photographic plate.

In order to check whether the diffraction pattern is produced by the
electron or by the x-rays a magnetic field is applied between the gold foil and the
photographic plate. It is noted that there is deflection in the path of the electron
indicating that the diffraction pattern is produced by electrons not by x-rays

because x-rays are not affected by electric and magnetic field.
St ; Gold foll
athode Slit
A %

- - "I ‘€¢—Photographic

— jon?” plate
— e P e mm - ——— - SGEEEE R
s T

Vacuum pump

- Vacuum pump
» Fig. 3.8




A B[l ' {

‘ . - L

¥ O il
Bragg's plane

Fig. 3.9

After developing the photographic plate a symmetrigal pattern con:c,isﬁng of
concentric rings about a central spot is obtained as shown in Fig, 3.9. This Pattery
1s similar to that produced by X-rays. - b

Hence Thomson confirms that the circular diffraction pattern is dye t, the
wave nature of electrons. Thomson calculated the wavelength of the electrop from

de Broglie equation e = 1_3‘571\ and the interplanar spacing from Bragg’s

equation A =2d sin6 for n = 1 where d is the crystal lattice spacing. |
Hence Thomson experiment clearly demonstrated the existence of de Broglie's
matter waves, ;
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o know that the classical differentia]

e i ]
A w1thawave velocity ‘v’ is quation of a progressive wave
i % 3w L2 12y
2 2 322 T @32 (1)

The general solution for equation (1) is
|\ /S \Po e—imt

Where ¥, is the amplitude of the wave at a point (x,y,z). It is a function of

position. Differentiating equation (2) with respect to‘t’ twice we get

aZ\P_ : _
PP ¥ - 3)

Substituting equation (3) in (1) we get

2y Pv P
3 x2 ay2 9z° Y

. . A N
Introducing the Laplacian operator V< =

2

V2iy = _."3_2\1: ..... (4)
v
We know that @ = 2nv =2n(v/A)
Cor @ _2n Y (5)
v A
Substituting equation (5) in (4) we get
oy BB aig @ ISlaEg 6)
12

. g BERCIE :
froducing the de Broglie’s wave concept A = — - cdualion (6) we get

ohnagabil 515 L ARN
v My -0 (7
| | :
i mszet ‘E’ be the total energy of the partlc]e “V’ be the potential energy and

be the kinetic energy then

Total Energy E = P.E. + K.E.
E=V+ %rnv2
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E-V = —'zlmv2

: 2E-V)= mv2 '
Multiplying by ‘m’ on both sides in the above equation wc get,

2m((E-V) = m2v2 (8)
Substituting equation (8) in (7) we obtain
2 8n°m il : .
VY + 2 E-V¥=0 ' .. (9)

This equation is known as Schrodinger time independent three dimensiong]
equation. ,
From the above equation the one dimensional Schrodinger time
independent wave equation can be written as
4oy + 8n°m
dx? h?

Waye

E-VY¥ =0 .. (10)

. h . . .
Introducing h =5, in equation (9) we obtain another form of Schrodinger

time independent three dimensional wave equation

M g

Vg 4 Y. E-VY'¥ =0 (11)

Special case:

For a free particle the

. potential energy V = 0 then the Schroedinger wave
equation for a free particle is ' )

V2"P+—2m‘E‘P =

h2 0 ' VoL (12)

ger time independent wave equation We

get the Schrodinger time dependent wave equation

-Differentiating equation (2) with respect to‘t’

we get
0¥ . ,
37 = -lewetiot
= ' —iwt’
1), e ;u) w=2nv

= -i2nvy .. —lot




or

Subs
(11) we get,

or

Il
L
N
=
=
gl
I
Il
=
»
’f
rlm

., 0¥
T — 3)

tituting equation (13) in Schrodinger time independent wave aQuatdN

V2, 2M iha—‘y—\f‘{l -0
r2 at

VoY = —2_2m[m a—‘P—W‘l \
R ot

h2

Multiplying LHS and RHS by o and rearranging we get

2 .
=B o g2y ongip. o JREY s (14
2m ot

Equation (14) is known as Schrodinger time dependent wave equation.

Equation (14) can also be written as

Whe

E= mi

2 :
he o .. 0¥
——V+VW¥ = ih—
( 2m ) ]at
or HY = EY¥

. —p2 A
re H=[ zﬁ V2+V} is called the Hamiltonian operator and
= q

™ is called the energy operator.

312 PHYSICAL SIGNIFICANCE OF A WAVE FUNCTION ()

1.
2.

Wave function ¥ must be finite everywhere.

Wave function ¥ is a complex quantity and tells the probability of
finding the particle’s position at the given time. Being a complex
function it does not have a direct physical meaning.

A wave function ¥ must be a single valued.
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3

A Wave fnetion W mast be o continuons and have a continugyg firg

dRuivative every where,

N , 2, "y . .
DWW - \‘l‘\ 1§ called the probability density and W is

also Calleg
probability amplitude,

. N . . . 2
0. 1f the particle is somewhere the integral of j‘l’l dt over the Whol,

space must be unity | ]‘l‘|2dt= T where dr= dx.dy.dz = dv

represents a small volume. The wave functions th
condition are known as normalized wave function.

3.13  APPLICATION OF SCHRODINGER WAVE EQUATION:

PARTICLE IN A ONE DIMENSIONAL INFINITE DEEP
POTENTIAL WELL

at satisfy the above

Let us consider a particle (electron, proton, etc.) restricted to move along
the x-axis between x = 0 and x = L by ideally reflecting infinitely high potential
well as shown in Fig. 3.10. Suppose the potential energy V of the particle is zero
inside the potential well but rises infinitely on the outside then we have

V=0when0<x<L

V=rco when0>x >L

<<

Il

o
<

It

Ve =
//:: 0 N g
:__”::i [~
éﬁ Electron ::::V_ )
] ‘ \:‘;:
ﬁ/“m
g N —~
; b -+ H\‘\"-\
W\\. -
X=0 X=L X-axs
Length of the box —
Fig. 3.10
In such a case the particle g said to be moving in an infinitely d¢°
potential well, »

The boundary condition for the wave function
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Y =0forx=90 (1a)

¥ =0forx=L l (1b)

We know that the Schrodinger one dimensional time independent wave
equatidn

d’¥  2m
—+—(E-V)¥ =0 ..
FRCIRY (2)
The potential energy inside the box is zero (V = 0) then eqn. (2) becomes
d?Y  2m
—+—E¥=0 ... 3
dx? B2 ©)
2 2mE
Let ke = -rT ..... (4)
1
Then eqn. (3) can be rewritten as
2
w0 . (5)
dx
The general solution for equation (5) is given by
W(x)=Asinkx+Bcoskx ... (6)

Where A and B are called arbitrary constants which can be calculated by
applying boundary conditions.

Determination of A and B
Applying the first boundary condition (1a)
Atx=0, ¥=0

Then eqn. (6) becomes
0=Asin0+Bcos0

0=0+B (1)
B0 - . o @)
Applying the second boundary condition (1b) '
Atx=L, ¥ =0
Then eqn. (6) becomes , , _
" 0=AsinkL+BcoskL PN (8)

Substituting eqn. (7) in (8) then
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0 ="ATGI KLY 7= Lo B weagy (9)
Herc A = 0
SNRE=00 suenibaad-adi S sors (10)
kL = nr
: e e (L)
or K L
Substituting the value of B and k in equation (§) we can write the Wave
function of the free electron which is confined in a one dimensional box
Y= Asinﬂi—X ----- (12)
- mx
o = Asin| —
In general e m(L ; n]
To find Energy of the particle:
From equation (4)
= 2mE
k2 =M=
h?
2
=0 22mE2 Since h2 =-b—"—2—
(h [ 4x ) 4n
or K2 8n°mE
H2 e (13)
Squaring equation (11) we get
2.2
k2 = N°n ' ;
12 . A (14)
Equating equation (13) and equation (14)
8n2mE 1 n2n2
h2 12
Energy of the particle (electron) £ = n2h2
P .(15)
8m L ,
2
In general E, =pn2|_h
8m L2

Where 1= 1,23 ...




From the above equation we can conclude that the energy values are
discrete. The value of E is also called eigen value and ¥, is also called eigen

function. The various energy levels and their wave functions of a particle enclosed
in a one dimensional box are shown in the Fig. 3.11.

V= vV

s

A

VAAVE

e o4
B 2\/n=2
¥
El n=1
3= Y=L P - azis
Length of the box —»
Fig. 3.1

Normalization of the wave function

For a one dimensional potential box of length ‘L’ the probability of finding
the particle is given by
L
P=|¥[dx=1
0
Substituting equation (12) in equation (16), we get

L
P= J’ A2 sin? -rﬂdx=1
0 L :

1AR



(T
= AZ] (1—003 2n7cle]dx=1
: 0 2

: : L
z(i_lsinZnnx/L\ i

2 2 2nm/L ),

A

a2 (L _1sin2nal/L ) 1
2 2 2nm/iL )
A2 (E_lsin 2nm )_1
2 2 2nmn/L
Here sinnnt = 0 hence sin2nn=0
Therefore the above equation can be written as
2
AL,
2
or A2 -2
L
2
or A= |2
T (17)
V= Y V=':’:
Eyq n=4 |\P4|2
2
l Es n=>3 IIJ3|
E E &
55 4 ™ n=2 KP2
E 2
' n=1 |y
X=0 =7 > X-axis
Length of the box —,
Fig. 3.12



2 . nnx
\ - L
n LSln L

The normalized wave function ang their energy values are sl

312.
114 THREE DIMENSIONAY, p

1own in Fig.

OTENTIAL BOX
| .The solutlon.of one-dimensiona| potential well
~ dimensional potential well. In g {

- (electron, proton, etc.) can move
quantum number, three quantum p

‘ can be extended for a three
wee dimensional potential well the particles
1 random direction. Instead of using only one

. . umbers (ny, Ny and n,) corresponding to the
three co-ordinate axis (X,y and z) are introduced,

If a,b,c are the length of the box alon

g X,y and z axis then the energy of the
particle E=Ey + Ey + E, . In general | gy

2.2
E _ n;?;h?' nyh n§h2
My Nz = i 2t 2
8ma® 8mb* 8mc
Ifa=b = c for a cubical box, energy eigen values can be written as
2
| h 2,2 2
Bs 5. = (nx+n +nz) (1)
T 8ma? y

The corresponding normalized wave function of an electron in a cubical
box can be written as

2 2 2 . nynx . WY . nonz
W onon = of=x=xZ.sin2X=sin—LL sin—-2
XiyEZ a a a a a a
. Nymx . WY  n,nz
O - |8 in—X"= sin~_—sin—2— .. (2)
nx,ny,nz as a a a

3.15 DEGENERACY AND NON - DEGENERACY
Degenerate state

When the three independent stationary states having quantum numbers
Such as (2 3 3), (3 2 3), (3 3 2) for ny, ny and ny have the same energy value
h2 ' : . W
22, \\2J Hence Ejs;, Ess, Ess and the corresponding wavefunction Wos3,
8mLe | At

¥ : ifferent combination of quantum
323, Yaasare called degenerate. Hence differen ¢ q

. berg gives the same eigen value with different eigen functions are called

: ' ted by electric and magnetic
ﬁe%gflerate state. The degenerate state will be affected by
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Non—Degenerate state i,
mber describes the same energ

mbinations of quantum nu
e and energy level are said to b,

If the various €O
function then such stat

eigen value and same eigen
non-degenerate state.

Example:
For ny = 3; ny=3;11z:'3 -
2 8 . 3mX_. 3ny . 3nZ
27h _ | @ gin=—=sin——sin—/=
—<'?_ and Y333 = sin sin A
E333 = 522 333 \/as a a 4

3.16 MICROSCOPE |
e magnified 1mage of a smaller

into - simple and compound
sed but in compound

Microscope 1S an instrument used to view th

object. Generally microscopes arc classified

microscopes. In a simple microscope only one lens is u
ses are used. |

microscope two or more len
Further they are classified int

microscope, ultraviolet microscope, etc.

o metallurgical microscope, electron

Basic definitions of microscope

(i) Magnifying Power-

The magnifying power (M) of a
the angles subtended by the final image a

object at eye placed at the near point.
M= Angle subtended by the final image at eye ()

Angle subtended by the object at eye placed at the near point (o)

microscope is defined as the ratio between
t the eye to the angle subtended by the

B
o
(i) Resolving Power

It is the ability of an optical instrument to form distinct and Separable

images of the two point objects which are close to each other

If ‘d’ is the least distance between two close point objects then we ¢4
A .

n writ

d=———

2 NA

Resolving power 1 = 2NA
A

Where N.A. is the Numeri |
: me rtu : :
wavelength of light through.vacll;lgfri Aperturg of themioroscopeiand g e



An optical microscope ¢
separation and the magnification

an resolve op|
1s.about 2000x.

317 ELECTRON MICROSCOPE

examined.

Constrliction

Essential parts of the electron microscope

i) An electron source

i) Electro magnetic lenses
iil) Metal aperture .

iv) Object holder

v) Screen

<
.........
”
v

o <Fan
g s

Hpe- Anode :
- Metal aperture

L~ Condensing lens
Hp»- Vacuum chamber
> Object

— 9 Object lens

- Projector lens

a2
N
|

~b.v-Eye: piece

Fluorescent screen

Fig. 3.14
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Description lament. Electrons which are emitted dye

¢ of tungsten fi ccelerated by a large potential applieg

-on gun is made of |
e he filament are a

to thermionic emission by t ’
to the electrodes of the electron gull:

made of coils enclosed inside the iron shiglq
es are

) o f the ¢

. the Fig. 3.13. If the gaps o Wo
: the middle as shown 1 . f aonetic fi .

phielL hes & %ap lztnsez are faced with each other umfo:ir(rzl 1rer:l S%S e Slﬁld is

electror_nciiggt_? lc'larl if the gaps of the two electromagne ; o 1ghtly

Ic)iirstclil‘;g:d. noilrilmifg,nn magnetic field is produced. Electron beam can be focused

by the electromagnetic lens.

Electro magnetic lens

In this system we have three magnetic lenses.

i) Condensing lens which is used to condense the electron beam.
i) Objective lens which is used to resolve the structures of the object. -
iii) Projector lens which is used to enlarge the object.

Metal aperture is used to get a narrow beam and object holder holds the
object. Enlarged image of the object is seen through the fluorescent screen.

The whole arrangement is kept inside a vacuum chamber as shown in the
Fig. 3.14.

Working

Streams of electrons from the electr
anode potential. The electron beam is then

aperture (slit) and the condensing lens. Th

on gun are accelerated by the positive
confined to a narrow beam by the metil

the object. en the electron beam is passed through
Condelnsing lens : Eye piece
|
l L] B || , L 4B,
Electron—_b___ _
/l A N T e e T
Apefture N Object ! ,
Object leng Sl 7 |4
1

screen

An interact; |
transmitted eje Veen th
ctron } € electrop
t LA Carpg . €am and : curs an
hrough the magnifying ObjeCtiI\::SI the Imag the object oc
cns

the

* Shown in Fig. 3 15. This lens me#" il

Projector lens [ Fluoresce”

: . agsSt B
€ Of the Object. : Then it 15 palﬂes :




e R D Ve

S e

B e SRR

st

S

the images of the object more than 10 times. Then the image is made to fall on
the screen Sy andithc clectron beam js passed through the magnifying projector
Jens. It also magmﬁCS the image of the object again more than 10 times. Finally
the image of the object is'madc to fall on g fluorescent screen. The image formed
on the fluorescent screen is viewe through an optical lens which is attached with

the eyepiece. It also 111ag11if'!cs th_c image 10 times, Therefore total magnification in
the order of more than 10° times js achieved,

Merits ) .
i)  The magnification is 100000X_

it) Focal length of the microscope can be varied,

Applications
i) Itis used to determine the complicated structure of the crystal.
ii) Itis used to study the disease due to virus and bacteria.

iii) Itis used to study and analysis of colloidal particles.
iv) Itis used to study the composition of papers, paints etc.

3.18 DIFFERENCES BETWEEN TELESCOPE AND MICROSCOPE

S.No. Telescope Microscope
| We get the magnified image | We get the magnified image
of the distant object. of the very small object.
2 Eye piece is small. Eye piece is large.
A
|3 Object is large. Object is small.
4 Permanent record is not Permanent record is possible
possible.
——

3.19 DIFFERENCES BETWEEN OPTICAL MICROSCOPE
AND ELECTRON MICROSCOPE

SNo. | Optical microscope Electron microscope
\-_M v .
1 Light source is used Source is an electron gun
\\ .
2 Optical lens system is used | Electro magnetic lens system
is used
3 .
Vacuum is not necessary Vacuum 1s necessary for the
for i operation.
T_\\iheg)eranon. p sy :
Magnification is 2000 X Magnification is 100000 X
\\J\
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PROBLEMS AND SOLUTIONS

An electron is accelerated by a potential difference of 140 V. What

B is the wave length of the electron?
So]ution :
Given: Accelerated voltage of the electron V=140 v
; h
ula: de Broglie wavelength A =
o i V2meV
Che 6.625x107>*
V2x9.11x10731x1.6x10~19 x140
6.625x10>%
(on) 3= 5x10
V4.08128x1047
- 6.625x107>4
6.3884x107%4
(or) A =1.0370x10"10 metres

The De-Broglie wavelength = A =1.0370A

2. An electron at rest is accelerated throu
Calculate the de Broglie wavelength of matter wave associated

gh a potential of 4000V.
with it.

Solution :
Given: V=4000V

Formula: de-Brogli h= |
ormula: de-Broglie wavelength >meV

6.625x10734
AS 1 19
J2x9.11x10731x1.6x10 %4000
—-34 6.625x10~34
S o M a1ex102
J1.1661x107% -

A =1.940x10~11m (or)0.1940 A

De-Broglie wavelength of electron = 0.1940 A
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3. Calculate the de-Broglie wave length of an electron of energy 150ev.

Solution :
Given : Energy of electron  E=150¢eV

or E=150x 1.6 x 10~19

Joules

E=24x10"17 Joules

or
Formula :
. h
We know that de-Broglie wavelength A = ——=
- \/EmE
Substituting the given values, we have
e 6.625x10~>*
J2x9.11x1031x2.4x107"7
\ - 6.625x1073*
J4.3728x10~47
- 6.625x10~>*
6.6127x1072*
A =1.0019x10"10 metres
De-Broglie wavelength A =1.0019 A
4. Calculate the de-Broglie wave length associated with a porton

moving with a velocity equal to 1/10 th of the velocity of light.
Mass of proton = 1.675 x 10—27 kg.

Solution :

Given : Mass of the proton m = 1.675 x 10-27 kg

Velocity of proton v = %x velocity of light,

1 8
\ 10><3><10
Velocity v= 30 x 100 m/s
h

Formula : de-Broglie wavelength A = —
mv

At 6.625x10734
1.675x10727 x30x10°

= 1.3184x107m

- De-Broglie wavelength A =1.3184x10"1*m 178



A neutron of mass 1.675 x 10-27 kg is moving with a kinetic

energy 15 KeV. Calculate the de-Broglie wavelength associated
with it.

SOIution .
Given : Energy of neutron E=15KeV

E=15x 103 x 1.6 x 10~19 Joules
E=2.4x10"15 Joules

i h

- de-Broglie wavelength A =
Formula g g —
Ch= 6.625x10~
J2x1.675x107% x2.4x10715
6.625x10>*
(or) A=

V8.04x10742

, _ 6.625x10~"

2.8355x1072

- A=23365%x10"13 m

De-Broglie wavelength of neutron = 2.3365 x 10713 m
Calculate the energy of the electron in the energy level
immediately after the lowest energy level, confined in a cubical
box of side 1 nm. Also find the temperature at which the average .
- energy of the molecules of a perfect gas would be equal to the
energy of the electron in the above said level.
Solutiop, «

4 Fora cubical box the energy eigen value is
rXET AR
h ( 2, 2 2)
= ng +Ng +n
EnxlnYInZ ’ 8 m L2 x y Z

For the next energy level to the lowest energy levelny =1 ny= landn,=2.

h22(12+12+22) |
8mLS oy

~ Byaz =
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I 1t
- E112 8mL2

Given L=1x _10‘“9 m
m=9.11x 10731 kg
h=6.625 x 10734 J sec.

6 x(6.625x1
8x9.11x10731x(1x107°)2

0-34)2

= Eyq2 =

2.6334x10756
- 7.288x107%8

I

Eq17 =3.6133 x 10719 Joules

ii) We know the average energy of the molecules of a perfect gas = %KBT

3
~Eq12 = =KgT
12 = 5178
r— 2E11
(or) The temperature T=—1<
3Kg

_ 2x3.6133x107 "7
3x1.38x107%3

Temperature of the molecules T = 1.7456 x 104 K
7. Calculate the minimum energy an electron which possess in 30
. infinitely deep potential well of width 10 nm.
Solution : '
Given: L=10nm=10x 10~ m
We know for minimum energy n = 1
Formula: Energy of an electron in an infinitely deep potential well

o o
8m 12
. Eo_ Tx(6.625x10734y2

8><9.1_1><10*31><(10X10—9)2



_ 4.3891x10757
7.288x10746

(or) E

E=6.0223 x10-22 §

_ 6.0223x10722
1.6x1071°

E=3.764 x 1073 ¢V

Minimum energy of an electron (E) = 3.764 x 10 eV

(or) E

g. Find the energy of an electron moving in one dimension in an
infinitely high potential box of width 0.2nm

Solution :

Given: Length (or) width of one dimension box L = 0.2 nm = 0.2x10~2 m
2.2

n“h

8m 2

Formula: The energy of an electron is E =

For Lowest energy n = 1.

12h?2

8m L2

_ (6.625x1074)?

8x9.11x10731x(0.2x10

(or) E=1.5056 x 107187
-18

(or) £ 1,5056x107"°

1,6x107"°
Energy of the electron E =9.4098 eV

-~ E=

—9)2

Calculate the number of photons emitted by a 150 watts sodium

vapour lamp. [Given A = 5893 Al

Given; Power = 150 Watts

F
“Mula : Energy = hy = %E
-34 8
107°* x3x10
n.» Energy E = E@.L___________

5893x107 10

=3.3726 X 10-19 Joules
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! ted Power
W R MONS c““ o ™ s
Number of photon Eneray

1500/

e A S e oA A e
s A b e S A

3372610~ ¥ Joules

B

= 4.4475 x 1020 per second
Number of photons emitted = 4.4475 x 1020

10. An electron is confined to a one-dimensional box of side 10-10 .
Obtain the first four Eigen values of the electron.

Solution :
— X . -10
Given: Sides of the box L=10""m

n2h2
Formula: Energy eigen value E=

8m L2
12 x(6.625%10734
8x(9.11x1073")(10719)?
_ 4.38906x10~%

First Eigen value E| =

Ej

7.288x1070
E; =6.022x 10718
6.022x10718
()  Ey=2221 _ _376305ev
1.6x10™

Second Eigen value

Ep

2
22 E| =2.4089 x 10~17] (or) 150 eV
Third Eigen value

E3=32E; =54198 x 10~17J (or) 338 eV

Fourth Eigen value
E4=42E} =9.6352 x 10-17J (or) 602 eV

11.  Calculate the lowest energy of the s

electrons confined to a box of length 1 A

i . 0
ystem containing t
Solution :

= Given: - LEGA

. Formula: ‘ X ) ;
e Energy of the system having two electrons
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2,2
E=2 n“h
8m 12

" E = 2[ (1)2 x(6.625x10734 )2
8x9.11x1073 x(1x10710)2

E=1.2045x 1017 Joules

_ 1.2044x107"7

eV
1.6x1071°

or E

E =75.279 eV
Energy of the system having two electrons = 75.279 eV



SHORT QUESTIONS AND ANSWERS

1. What is quantum Physics?

Quantum Mechanics is the theoretical basis of Modern Physics that eXpla;
the nature and behavior of matter and energy on the atomic and subatomic leve] Mg

Quantum Mechanics (also called wave mechanics) deals with the investjo,.
of the behavior of micro-particles. Most advances that have taken place i
State Physics, Atomic Physics and Nuclear Physics are based on the princip
Quantum Mechanics.

gatif)a
Solig
les of

2. What is meant by black body radiation?

A perfect black body is one which absorbs all the thermal radiatjoy,
incident upon it and it does not reflect light. There is no perfect black body exjs
An object coated with a black pigment is nearly a black body. The light emitted by
a black body is called black-body radiation. ’

3. State Wein’s displacement law.

This law states that the product of the wavelength corresponding to maximum
energy and the absolute temperature is a constant.
Am T = constant
4. State Rayleigh — Jean’s law.

The emissive power of the black body at absolute temperature T and ate
given wavelength A is directly proportional to T and inversely proportional to X"

3K
E}. = A4BT
5. List out the characteristics of photon.

Max Planck introduced the concepts that emission or absorption qf
clectromagnetic radiation takes place as discrete quanta or tiny discrff
packets called ‘photons’ each having an energy hv where h is the Planck ®
constant and v is the frequency of radiation.

ii. Photons are not affected by -electric and magnetic field and they ¢
electrically neutral.

iii. Mass of the photon m = h/c) and momentum of the photon P = /A sinc &
mc.

: , ' , L epight
Iv. Velocity of the photon is 3 x 10® m/sec and it is equal to the velocity of i

»

‘



6. Whatis Compton effect ang Compton shift?

also the modified radiation of longer

wavelength. This is called "‘Compton effect’. The difference between scattered

wavelengths is called ‘Compton shift’.

7. What is meant by matter waves or De-Broglie waves?

{)ﬂ 111924, Louis Victor due de Broglie a French scientist proposed that light
waves behaves §0met1mes as.pamCleS and some other times behaves as waves.
Hence the material particles like atoms, molecules, electrons, protons or neutrons

behz.we as waves are lfnown' as matter waves or de Broglie waves. This concept of
particle-wave duality is called De-Broglie hypothesis.

8. List the properties of matter waves.

i. Greater the mass of the particle smaller will be the wavelength of
the matter waves.

ii. Matter waves are not electromagnetic waves.
iii. Matter waves can travel faster than light.

9. What is Schrodinger wave equation?

Schrodinger equation is one of the basic equations in quantum mechanics.
This equation can be applied for both_macroscopic and microscopic particles.
Schrodinger derived a mathematical equation to describq the .dual nature Qf matter
waves. The equation describes the wave nature of a particle in mathematical form

is known as Schrodinger wave equation.

10.  Write down the Schrodinger wave equations.

of Schrodinger wave equations Viz.

t es . o
There are two typ e dependent wave equation is

(i) Schrodinger three dimensional tim

2 ¥
i — if—
(_Z]m VeV = 5
Or EW:H‘P
cle

Where E — Total energy of the partl
H —s Hamiltonian operator
¥ _, Wave function

(i) Schrodinger three dimension |
A2y 4 20 _E-vI¥ =0 (3 dimensional)

a1 time independent wave equation 1s
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| energy of the particle

Where E — Tota .
particle

V — Potential energy of the
m — mass of the particle
_y Planck’s constant)

h— i1l (h ’
s of wave function?

2n
11. What are the physical significance
1. Wave function ¥ must be finite everywhere.

7 Wave function ¥ is a complex quantity and .tells the‘ probability
finding the particle’s position at the given tme. Being a comple |
function it does not have a direct physical meaning.

3. A wave function ¥ must be a single valued.

4. Wave function ‘¥ must be a continuous and have a continuous firg

derivative every where.
5. WYY o= |\P|2 is called the probability density and ¥ is also cally |
probability amplitude. '

6. If the particle is somewhere the integral of [‘Plz dt over the whol
space must be unity H‘i’|2d1= 1 where dt= dxdydz = &

represents a small volume. The wave functions that satisfy the abot
condition are known as normalized wave function.

12. What to you understand by the term wave function?

~ Wave function () is a variable quantity that is associated with a movit: |
particle at any position (x,y,z) and at any time ‘t". i

13. Define normalization process and write down the normalized wé¥ |
function for an electron in a one dimensional potential well €}
length ‘a’ meters. .f

' Nomllalization is the process by which the probability of findiné’

particle  inside any potential well can be done. i

For a one dimensional potential well of length ‘a’ meter the normel?” |
wave function is given by

2
¥, = J: i N
a a




Write the formula for finding the Eigen value and Eigen function.

Eigen value is defined as energy of the particle and is denoted by the letter

(En)-

4.

= n2h2
8ml2

En
Eigen function is defined as the wave function of the particle and is denoted

by the letter ()
2 nmx
Y. = /:sin
""Va a

45. What is degenerate and non-degenerate state? Give examples.

When the three independent stationary states having
as (233),(323).063 2) for ny, ny and n, have the same energy

quantum numbers such
value

( 12
225 eole Hence Eass, Es23, Ess2 and the corresponding wavefunction Y233,
| 8mL
‘*’323, ‘P332are called d
numbers gives the same eigen val
degenerate state. The degenerate sta

field.

If the various com
eigen value and same eigen function then such state

non-degenerate state.

egenerate. Hence different combination of quantum

ue with different eigen functions are called
te will be affected by electric and magnetic

binations of quantum number describes the same energy
and energy level are said to be

Example:
For ny = 3; ny=3 sin, =3
2
2Ly and W333 = /_—8; sin i sin Sy sin Sz :

8 maz, \a a a a

E333 =

16. Define magnifying power.
The magnifying power (M) _of a microscope is defined as the ratio between
the angles cubtended by the final image at the eye to the angle subtended by the
object at eye placed at the near point. ‘
: Angle subtended by the final image at eye (b)
M= btended by the obj -
Angle subtended by the object at eye placed at the near point (a )

M=5
a
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