SNS COLLEGE OF TECHNOLOGY
 (An Autonomous Institution)
 COIMBATORE-35
 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

19EET201-Field Theory
 Question Bank

UNIT- I
 INTRODUCTION

PART- A (2 MARKS)

1. What are the source of electric field and magnetic fields?
2. Give any three coordinate systems.
3. Express the value of differential volume in rectangular and cylindrical Co-ordinate systems
4. Write expression for differential length in cylindrical and spherical co- ordinates.
5. What is physical significance of divergence of D.
6. Express the divergence of a vector in the three system of orthogonal Co-ordination.
7. State divergence theorem.
8. State Stoke's theorem.
9. How is the unit vectors defined in three coordinate systems?

PART- B

1 (a) The electric field in a spherical co-ordinate is given by $\mathrm{E}=(\mathrm{r} / 5$)ar. Show that closedE.dS=(.E)dv.

1(b) State and proof divergence theorem
2. Check validity of the divergence theorem considering the field $\mathrm{D}=2 \mathrm{xyax}+\mathrm{x} 2 \mathrm{ay} \mathrm{c} / \mathrm{m} 2$ and the rectangular parallelepiped formed by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=2 \& \mathrm{z}=0, \mathrm{z}=3$.
3. A vector field $\mathrm{D}=[5 \mathrm{r} 2 / 4]$ Ir is given in spherical co-ordinates. Evaluate both sides of divergence theorem for the volume enclosed between $\mathrm{r}=1 \& \mathrm{r}=2$.
4. Given $A=2 r \cos I r+r I$ in cylindrical co-ordinates .for the contour $x=0$ to $1 y=0$ to1, verify stoke's theorem
5. Explain three co-ordinate system.
6. Determine the divergence of these vector fields
i. $P=x 2 y z a x+x y$ az
ii. $\mathrm{Q}=\sin \mathrm{a}+2 \mathrm{z} \mathrm{a}+\mathrm{zcos} \mathrm{az}$
iii. $T=(1 / r 2) \cos a r+r \sin \cos a+\cos a$
7. (a) Discuss about curl of a vector
7. (b) Derive an expression for curl of a vector
7. (c) State stoke's theorem
8. (a) Define divergence, gradient, curl in spherical co-ordinate system with mathematical expression
8. (b) Prove that divergence of a curl of a vector is zero, using stoke's theorem

