
Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

PROBLEM SOLVING AND C PROGRAMMING
I YEAR - I SEM

UNIT 2 – C Programming Basics

TOPIC 5 – Variables

An Autonomous Institution

AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

PROBLEM SOLVING AND C PROGRAMMING

C Programming Basics

Variables

is a data name that may be used to

A variable may take different values at different times during execution.

Some examples of variables’ names are:
Average

Counter_1
class_strength

variable names may consist of letters, digits, and the underscore(_) character, and are subject
to the following conditions:

is a data name that may be used to store a data value.

A variable may take different values at different times during execution.

variable names may consist of letters, digits, and the underscore(_) character, and are subject

1. They must begin with a letter.
Some systems permit underscore as the first character.

2. ANSI standard recognizes a length of 31 characters.
However, length should not be normally more than However, length should not be normally more than
eight characters are treated as significant by many compilers.

3. Uppercase and lowercase are significant.
That is, the variable ‘Total’ is not the same as ‘total’ or ‘TOTAL’.

4. It should not be a keyword.
5. White space is not allowed.

Some examples of valid variable names are:Some examples of valid variable names are:
Value T_raise Delhi x1

Invalid examples include: 123 (area) %

Some systems permit underscore as the first character.
2. ANSI standard recognizes a length of 31 characters.

However, length should not be normally more than eight characters, since only the first However, length should not be normally more than eight characters, since only the first
eight characters are treated as significant by many compilers.

That is, the variable ‘Total’ is not the same as ‘total’ or ‘TOTAL’.

x1 ph_value mark

25th

After designing suitable variable names, we must
Declaration does two things:

1. It tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.2. It specifies what type of data the variable will hold.

IMPORTANT NOTE:
“The declaration of variables must be done before they are used in the program

After designing suitable variable names, we must declare them to the compiler.

1. It tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.2. It specifies what type of data the variable will hold.

“The declaration of variables must be done before they are used in the program

A variable can be used to store a value of any data type.
That is, the name has nothing to do with its type.

The syntax for declaring a variable is as follows:
data-type v1,v2,....vn ;data-type v1,v2,....vn ;

vn are the names of variables.
Variables are separated by commas.
A declaration statement must end with a semicolon.

For example, valid declarations are:
count;
number, total;number, total;

double ratio;

and double are the keywords to represent integer type and real type data values
respectively

A variable can be used to store a value of any data type.
That is, the name has nothing to do with its type.

The syntax for declaring a variable is as follows:

A declaration statement must end with a semicolon.

and double are the keywords to represent integer type and real type data values

Identifier:
C supports a feature known as “type definition” that allows
that would represent an existing data type.

defined data type identifier can later be used to declare variables.

It takes the general form:
» typedef type identifier;

Where ‘type’ refers to an existing data type and “identifier” refers to the “new” name given to
the data type. the data type.

Remember that the new type is ‘new’ only in name, but not the data type.

C supports a feature known as “type definition” that allows users to ‘define’ an “identifier

defined data type identifier can later be used to declare variables.

Where ‘type’ refers to an existing data type and “identifier” refers to the “new” name given to

Remember that the new type is ‘new’ only in name, but not the data type.

typedef type identifier;

Some examples of type definition are:
typedef int units;typedef int units;
typedef float marks;

units symbolizes int and marks symbolizes
They can be later used to declare variables as follows:

units batch1, batch2;
marks name1[50], name2[50];

Here, batch1 and batch2 are declared as int
declared as floating point array variables. declared as floating point array variables.

The main advantage of typedef is that we can create meaningful data type names for increasing
the readability of the program.

symbolizes float.
They can be later used to declare variables as follows:

int variable and name1[50] and name2[50] are
array variables. array variables.

is that we can create meaningful data type names for increasing

Identifier:
Another user-defined data type is enumerated data type provided by ANSI standard.
It is defined as follows:

enum identifi er {value1, value2, ... enum identifi er {value1, value2, ...
The “identifier” is a user-defined enumerated data type which can be used to declare variables
that can have one of the values enclosed within the braces (known as enumeration constants).
After this definition, we can declare variables to be of this ‘new’ type as below:

enum identifier v1, v2, ... vn;
The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ...

defined data type is enumerated data type provided by ANSI standard.

{value1, value2, ... valuen};{value1, value2, ... valuen};
defined enumerated data type which can be used to declare variables

that can have one of the values enclosed within the braces (known as enumeration constants).
After this definition, we can declare variables to be of this ‘new’ type as below:

can only have one of the values value1, value2, ...

enum identifier {value1, value2, ... valuen
An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week_start, week_endenum day week_start, week_end

week_start = Monday;
week_end = Sunday;

if(week_st = = Tuesday)
week_end = = Monday;

The compiler automatically assigns integer digits beginning with “The compiler automatically assigns integer digits beginning with “

That is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on.
However, the automatic assignments can be overridden by assigning values explicitly to the
enumeration constants.

valuen};

, ... Sunday};
week_end;week_end;

The compiler automatically assigns integer digits beginning with “0” to all the enumeration The compiler automatically assigns integer digits beginning with “0” to all the enumeration

That is, the enumeration constant value1 is assigned 0, value2 is assigned 1, and so on.
However, the automatic assignments can be overridden by assigning values explicitly to the

Variables in C can have not only data type but also
about their location and visibility.
The storage class decides the portion of the program
recognized.
Consider the following example:Consider the following example:

/* Example of storage classes */
int m;
main()
{

int i;
float balance;
....
function1();function1();

}
function1()
{

int i;
float sum;

Variables in C can have not only data type but also storage class that provides information

the portion of the program within which the variables are

m which has been declared before the main
“global variable”.
It can be used in all the functions in the program.
It need not be declared in other functions.

global variable is also known as an external variable.

The variables i, balance and sum are called “local variables”.
Because they are declared inside a function.
Local variables are visible and meaningful only inside
which they are declared.
They are not known to other functions.

SCOPE OF A VARIABLE

Note that the variable i has been declared in both the functions.
Any change in the value of i in one function does not affect its value in

main is called

is also known as an external variable.

/* Example of storage classes */
int m;
main()
{

are called “local variables”.

visible and meaningful only inside the functions in

{
int
float balance;
....
function1();

}
function1()
{

int

has been declared in both the functions.
in one function does not affect its value in

int
float sum;
....

}

There are four storage class specifiers:

The storage class is another qualifier (like long or unsigned) that can be added to a variable declaration as

count;
register char ch;

extern long total;

Static and external (extern) variables are automatically initialized to zero.
Automatic (auto) variables contain undefined values (known as ‘garbage’) unless they are initialized

The storage class is another qualifier (like long or unsigned) that can be added to a variable declaration as

Static and external (extern) variables are automatically initialized to zero.
Automatic (auto) variables contain undefined values (known as ‘garbage’) unless they are initialized

#include<stdio.h>
#include<conio.h>
Void main()

c= 340;c= 340;
(“C = %d”, c);

int c = 450;
Printf(“C = %d”, c);

(“C = %d”, c);
();

#include<stdio.h>
#include<conio.h>
Void main()
{

int static c= 340;int static c= 340;
Printf(“C = %d”, c);
{

int c = 450;
Printf(“C = %d”, c);

}
Printf(“C = %d”, c);
getch();

}}

Output:
C = 340
C = 340
C = 340

Variables are created for use in program statements such as:
value = amount + inrate * amount;
while (year <= PERIOD)

year = year + 1;

In the first statement, the numeric value stored in the variable
and the product is added to amount.

The result is stored in the ‘variable’ value.
This process is possible only if the variables amount and
The variable value is called the target variable. The variable value is called the target variable.
While all the variables are declared for their type, the variables that are used in expressions (on the right
side of equal (=) sign of a computational statement) must be assigned values before they are encountered
in the program.
Similarly, the variable year and the symbolic constant
values before this statement is encountered.

Variables are created for use in program statements such as:

stored in the variable inrate is multiplied by the value stored in

This process is possible only if the variables amount and inrate have already been given values.

While all the variables are declared for their type, the variables that are used in expressions (on the right
side of equal (=) sign of a computational statement) must be assigned values before they are encountered

and the symbolic constant PERIOD in the while statement must be assigned

Values can be assigned to variables using the assignment operator “= “ as follows:
variable_name = constant;

initial_value = 0;
nal_value = 100;nal_value = 100;

balance = 75.84;

C permits multiple assignments in one line.

initial_value = 0; fi nal_value = 100; are valid statements.

An assignment statement implies that the value of the variable on the An assignment statement implies that the value of the variable on the
the value of the quantity (or the expression) on the right
The statement:

year = year + 1;
means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

Values can be assigned to variables using the assignment operator “= “ as follows:

= 100; are valid statements.

An assignment statement implies that the value of the variable on the left of the ‘equal sign’ is set equal to An assignment statement implies that the value of the variable on the left of the ‘equal sign’ is set equal to
right.

means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.

During assignment operation, C converts the type of value on the right
This may involve truncation when real value is converted to an integer.
It is also possible to assign a value to a variable at the time the variable is declared.
This takes the following form:

-type variable_name = constant;-type variable_name = constant;
Some examples are:

fi nal_value = 100;
char yes = ‘x’;
double balance = 75.84;

The process of giving initial values to variables is called
C permits the initialization of more than one variables in one statement using multiple assignment

p = q = s = 0;
x = y = z = 10;

are valid. The first statement initializes the variables p, q, and s to zero while the second initializes x, y,
and z with 10.

During assignment operation, C converts the type of value on the right-hand side to the type on the left.
when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared.

The process of giving initial values to variables is called initialization.
C permits the initialization of more than one variables in one statement using multiple assignment

are valid. The first statement initializes the variables p, q, and s to zero while the second initializes x, y,

Another way of giving values to variables is to input data through keyboard using the
It is a general input function available in C and is very similar in concept to the
It works much like an INPUT statement.
The general format of scanf is as follows:

scanf(“control string”, &variable1,&variable2,....);scanf(“control string”, &variable1,&variable2,....);
The control string contains the format of data being received.
The ampersand symbol & before each variable name is an operator that specifies the variable name’s

>

number1, number2, sum;number1, number2, sum;
("Enter two integers: ");
("%d %d", &number1, &number2);

sum = number1 + number2;
("%d + %d = %d", number1, number2, sum);

Another way of giving values to variables is to input data through keyboard using the scanf
It is a general input function available in C and is very similar in concept to the printf function.

(“control string”, &variable1,&variable2,....);(“control string”, &variable1,&variable2,....);
The control string contains the format of data being received.

before each variable name is an operator that specifies the variable name’s

OUTPUT:
Enter two integers: 12 11
12+11 = 23

>

number1, number2, sum;
("Enter two integers: ");("Enter two integers: ");
("%d %d", &number1, &number2);

sum = number1 + number2;
("%d + %d = %d", number1, number2, sum);

("%d %d", &number1, &number2);
When this statement is encountered by the computer, the execution stops and waits for the value of the
variable number to be typed in. variable number to be typed in.
Since the control string “%d” specifies that an integer value is to be read from the terminal, we have to
type in the value in integer form.
Once the number is typed in and the ‘Return’ Key is pressed, the computer then proceeds to the next

Thus, the use of scanf provides an interactive feature and makes the program ‘user friendly’.

OUTPUT:
Enter two integers: 12 11
12+11 = 23

When this statement is encountered by the computer, the execution stops and waits for the value of the

Since the control string “%d” specifies that an integer value is to be read from the terminal, we have to

Once the number is typed in and the ‘Return’ Key is pressed, the computer then proceeds to the next

provides an interactive feature and makes the program ‘user friendly’.

#define symbolic-name value of constant

Valid examples of constant definitions are:
#define STRENGTH 100
#define PASS_MARK 50#define PASS_MARK 50
#define MAX 200
#define PI 3.14159

Symbolic names are sometimes called constant identifiers.
Since the symbolic names are constants (not variables), they do not appear in declarations.
Symbolic names are sometimes called constant identifiers.
Since the symbolic names are constants (not variables), they do not appear in declarations.

The following rules apply to a #define statement which define a symbolic constant:

Symbolic names have the same form as variable names. (Symbolic names are written in
distinguish them from the normal variable names, which are written in lowercase letters.

2. No blank space between the pound sign ‘#’ and the word define is permitted.2. No blank space between the pound sign ‘#’ and the word define is permitted.

3. ‘#’ must be the first character in the line.

4. A blank space is required between #define and symbolic name and between the symbolic name and
the constant.

5. #define statements must not end with a semicolon.

6. After definition, the symbolic name should not be assigned any other value within the program by
using an assignment statement. For example, STRENGTH = 200; is illegal.using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the program
(the usual practice is to place them in the beginning of the program).

The following rules apply to a #define statement which define a symbolic constant:

Symbolic names have the same form as variable names. (Symbolic names are written in CAPITALS
distinguish them from the normal variable names, which are written in lowercase letters.

2. No blank space between the pound sign ‘#’ and the word define is permitted.2. No blank space between the pound sign ‘#’ and the word define is permitted.

4. A blank space is required between #define and symbolic name and between the symbolic name and

6. After definition, the symbolic name should not be assigned any other value within the program by
using an assignment statement. For example, STRENGTH = 200; is illegal.using an assignment statement. For example, STRENGTH = 200; is illegal.

7. Symbolic names are NOT declared for data types. Its data type depends on the type of constant.

8. #define statements may appear anywhere in the program but before it is referenced in the program
(the usual practice is to place them in the beginning of the program).

