SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

GRADIENT, DIVERGENCE \& CURL

Vector differential operator: $\boldsymbol{\nabla}$

- $\boldsymbol{\nabla} \equiv \frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}=\boldsymbol{i} \frac{\partial}{\partial x}+\boldsymbol{j} \frac{\partial}{\partial y}+\boldsymbol{k} \frac{\partial}{\partial z}$
- The operator $\boldsymbol{\nabla}$ is known as ' $\mathbf{N a b l a}^{\prime}$

The Gradient: $\nabla \phi$

- Let $\phi(x, y, z)$ be defined and differentiable at each point (x, y, z) in a certain region of space. Then the gradient of ϕ, is defined by

$$
\boldsymbol{\nabla} \phi \equiv\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right) \phi=\frac{\partial \phi}{\partial x} \boldsymbol{i}+\frac{\partial \phi}{\partial y} \boldsymbol{j}+\frac{\partial \phi}{\partial z} \boldsymbol{k}
$$

The Divergence: $\quad \nabla . V$

- Let $\boldsymbol{V}=V_{1} \boldsymbol{i}+V_{2} \boldsymbol{j}+V_{3} \boldsymbol{k}$ be defined and differentiable at each point (x, y, z) in a certain region of space.
- Then the divergence of V, is defined by

$$
\nabla \cdot \mathrm{V} \equiv\left(\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k\right) \cdot\left(V_{1} i+V_{2} j+V_{3} k\right)=\frac{\partial V_{1}}{\partial x}+\frac{\partial V_{2}}{\partial y}+\frac{\partial V_{3}}{\partial z}
$$

N.B.: $\boldsymbol{\nabla} \cdot \boldsymbol{V}$ defines a scalar Field

The Curl: $\nabla \times V$

- Let $\boldsymbol{V}=V_{1} \boldsymbol{i}+V_{2} \boldsymbol{j}+V_{3} \boldsymbol{k}$ be defined and differentiable at each point (x, y, z) in a certain region of space. Then the curl of \boldsymbol{V}, is defined by

$$
\begin{aligned}
\boldsymbol{\nabla} & \times \mathbf{V}
\end{aligned} \begin{aligned}
& \equiv\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right) \times\left(V_{1} \boldsymbol{i}+V_{2} \boldsymbol{j}+V_{3} \boldsymbol{k}\right) \\
& \\
&
\end{aligned}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
V_{1} & V_{2} & V_{3}
\end{array}\right|, ~
$$

N.B.: $\boldsymbol{\nabla} \times \boldsymbol{V}$ defines a vector field

Some properties

1. $\boldsymbol{\nabla} \times \mathbf{V} \equiv\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\end{array}\right|=\left(\frac{\partial V_{3}}{\partial y}-\frac{\partial V_{2}}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial V_{3}}{\partial x}-\frac{\partial V_{1}}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial V_{2}}{\partial x}-\frac{\partial V_{1}}{\partial y}\right) \boldsymbol{k}$
2. $\boldsymbol{\nabla} \times(\mathbf{A}+\mathbf{B})=\boldsymbol{Z} \times \mathbf{A}_{3}+\boldsymbol{\nabla} \times \mathbf{B}$
3. $\boldsymbol{\nabla} \cdot(\phi \mathbf{A})=(\boldsymbol{\nabla} \phi) \cdot \mathbf{A}+\phi(\boldsymbol{\nabla} \cdot \mathbf{A})$
4. $\boldsymbol{\nabla} \times(\phi \mathbf{A})=(\boldsymbol{\nabla} \phi) \times \mathbf{A}+\phi(\boldsymbol{\nabla} \times \mathbf{A})$
5. $\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})$
6. $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \phi) \equiv \boldsymbol{\nabla}^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}$
7. $\nabla \times(\nabla \cdot \boldsymbol{A}) \equiv 0$
8. $\boldsymbol{\nabla} \cdot(\nabla \times A) \equiv 0$

Problem 1: If $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find $\nabla \phi$ at the point $(\mathbf{1}, \mathbf{- 2 , - 1})$
Solution: $\nabla \phi=\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right)\left(3 x^{2} y-y^{3} z^{2}\right)$
$=i \frac{\partial}{\partial x}\left(3 x^{2} y-y^{3} z^{2}\right)+\boldsymbol{j} \frac{\partial}{\partial y}\left(3 x^{2} y-y^{3} z^{2}\right)+$

$$
\boldsymbol{k} \frac{\partial}{\partial z}\left(3 x^{2} y-y^{3} z^{2}\right)
$$

$$
=6 x y \boldsymbol{i}+\left(3 x^{2}-3 y^{2} z^{2}\right) \boldsymbol{j}-2 y^{3} z \boldsymbol{k}
$$

$$
\left.\nabla \phi\right|_{(1,-2,-1)}=6(1)(-2) \boldsymbol{i}+\left\{3(1)^{2}-3(-2)^{2}(-1)^{2}\right\} \boldsymbol{j}
$$

$$
-2(-2)^{3}(-1) \boldsymbol{k}
$$

$$
=-12 \boldsymbol{i}-9 \boldsymbol{j}-16 \boldsymbol{k}
$$

Problem 2: If $\boldsymbol{A}=x^{2} z \boldsymbol{i}-2 y^{3} z^{2} \boldsymbol{j}+x y^{2} z \boldsymbol{k}$, find $\nabla \cdot \boldsymbol{A}$ at the point $(1,-1,1)$.

Solution:

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{A}=\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right) \cdot\left(x^{2} z \boldsymbol{i}-2 y^{3} z^{2} \boldsymbol{j}+x y^{2} z \boldsymbol{k}\right) \\
&=\frac{\partial}{\partial x}\left(x^{2} z\right)+\frac{\partial}{\partial y}\left(-2 y^{3} z^{2}\right)+\frac{\partial}{\partial z}\left(x y^{2} z\right) \\
&=2 x z-6 y^{2} z^{2}+x y^{2} \\
&\left.\nabla \cdot \boldsymbol{A}\right|_{(1,-1,1)}=2(1)(1)-6(-1)^{2}(1)^{2}+(1)(-1)^{2} \\
&=-3
\end{aligned}
$$

Problem 3: If $\phi=2 x^{3} y^{2} z^{4}$, find $\nabla \cdot \nabla \phi$. Solution: $\nabla \phi=\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right)\left(2 x^{3} y^{2} z^{4}\right)$

$$
\begin{aligned}
& =\boldsymbol{i} \frac{\partial}{\partial x}\left(2 x^{3} y^{2} z^{4}\right)+\boldsymbol{j} \frac{\partial}{\partial y}\left(2 x^{3} y^{2} z^{4}\right)+\boldsymbol{k} \frac{\partial}{\partial z}\left(2 x^{3} y^{2} z^{4}\right) \\
& =6 x^{2} y^{2} z \boldsymbol{i}+4 x^{3} y z^{4} \boldsymbol{j}+8 x^{3} y^{2} z^{3} \boldsymbol{k}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\nabla \cdot \nabla \phi & =\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k}\right) \cdot\left(6 x^{2} y^{2} z \boldsymbol{i}+4 x^{3} y z^{4} \boldsymbol{j}+8 x^{3} y^{2} z^{3} \boldsymbol{k}\right) \\
& =\frac{\partial}{\partial x}\left(6 x^{2} y^{2} z\right)+\frac{\partial}{\partial y}\left(4 x^{3} y z^{4}\right)+\frac{\partial}{\partial z}\left(8 x^{3} y^{2} z^{3}\right) \\
& =12 x y^{2} z^{4}+4 x^{3} z^{4}+24 x^{3} y^{2} z^{2}
\end{aligned}
$$

THANK YOU

