
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

Levels of Inheritance 

• Single Inheritance 

• Multiple Inheritance 

• Multilevel Inheritance 

• Hierarchical Inheritance 

• Hybrid Inheritance 

Types Of Inheritance 

Given below is a pictorial representation of the various types of inheritance. 

 

We will see each type of inheritance with examples in the below sections. 

#1) Single Inheritance 

In single inheritance, a class derives from one base class only. This means that there is only one 

subclass that is derived from one superclass. 

Single inheritance is usually declared as follows: 

class subclassname : accessspecifier superclassname { 

                    //class specific code; 

 }; 

 

Given below is a complete Example of Single Inheritance. 

 

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/06/types-of-inheritance1.png
https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/06/Single-inheritance.png


SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

#include <iostream> 

#include <string> 

using namespace std; 

class Animal 

{ 

   string name=""; 

   public: 

   int tail=1; 

   int legs=4; 

   

}; 

class Dog : public Animal 

{ 

   public: 

   void voiceAction() 

   { 

      cout<<"Barks!!!"; 

   } 

}; 

int main() 

{ 

   Dog dog; 

   cout<<"Dog has "<<dog.legs<<" legs"<<endl; 

   cout<<"Dog has "<<dog.tail<<" tail"<<endl; 

   cout<<"Dog "; 

   dog.voiceAction(); 

} 

Output: 

Dog has 4 legs 

Dog has 1 tail 

Dog Barks!!! 

We have a class Animal as a base class from which we have derived a subclass dog. Class dog inherits 

all the members of the Animal class and can be extended to include its own properties, as seen from the 

output. 

Single inheritance is the simplest form of inheritance. 

#2) Multiple Inheritance 

 

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/06/Multiple-inheritance.png


SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

We present the below program to demonstrate Multiple Inheritance. 

#include <iostream> 

using namespace std; 

//multiple inheritance example 

class student_marks { 

protected: 

int rollNo, marks1, marks2; 

public: 

void get() { 

cout << "Enter the Roll No.: "; cin >> rollNo; 

cout << "Enter the two highest marks: "; cin >> marks1 >> marks2; 

   } 

}; 

class cocurricular_marks { 

protected: 

int comarks; 

public: 

void getsm() { 

cout << "Enter the mark for CoCurricular Activities: "; cin >> comarks; 

   } 

}; 

  

//Result is a combination of subject_marks and cocurricular activities marks 

class Result : public student_marks, public cocurricular_marks { 

   int total_marks, avg_marks; 

   public: 

   void display() 

   { 

      total_marks = (marks1 + marks2 + comarks); 

      avg_marks = total_marks / 3; 

      cout << "\nRoll No: " << rollNo << "\nTotal marks: " << total_marks; 

      cout << "\nAverage marks: " << avg_marks; 

   } 

}; 

int main() 

{ 

   Result res; 

res.get(); //read subject marks 

res.getsm(); //read cocurricular activities marks 

res.display(); //display the total marks and average marks 

} 

Output: 

Enter the Roll No.: 25 

Enter the two highest marks: 40 50 

Enter the mark for CoCurricular Activities: 30Roll No: 25 



SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

Total marks: 120 

Average marks: 40 

In the above example, we have three classes i.e. student_marks, cocurricular_marks, and Result. The 

class student_marks reads the subject mark for the student. The class cocurricular_marks reads the 

student’s marks in co-curricular activities. 

The Result class calculates the total_marks for the student along with the average marks. 

In this model, the Result class is derived from student_marks and cocurricular_marks as we calculate 

results from the subject as well as co-curricular activities marks. 

This exhibits multiple inheritances. 

Diamond problem 

Diamond Problem is pictorially represented below: 

 

Here, we have a child class inheriting two classes Father and Mother. These two classes, in turn, inherit 

the class Person. 

As shown in the figure, a class Child inherits the traits of a class Person twice i.e. once from Father and 

the second time from Mother. This gives rise to ambiguity as the compiler fails to understand which 

way to go. 

Since this scenario arises when we have a diamond-shaped inheritance, this problem is famously called 

“The Diamond Problem”. 

The Diamond problem implemented in C++ results in ambiguity error at compilation. We can resolve 

this problem by making the root base class virtual. We will learn more about the “virtual” keyword in 

our upcoming tutorial on polymorphism. 

#3) Multilevel Inheritance 

Multilevel inheritance is represented below. 

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/06/Diamond-problem.png


SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

 

In multilevel inheritance, a class is derived from another derived class. This inheritance can have as 

many levels as long as our implementation doesn’t go wayward. In the above diagram, class C is 

derived from Class B. Class B is in turn derived from class A. 

Let us see an example of Multilevel Inheritance. 

#include <iostream> 

#include <string> 

using namespace std; 

class Animal 

{ 

   string name=""; 

   public: 

   int tail=1; 

   int legs=4; 

   

}; 

class Dog : public Animal 

{ 

   public: 

   void voiceAction() 

   { 

      cout<<"Barks!!!"; 

   } 

}; 

class Puppy:public Dog{ 

   public: 

   void weeping() 

   { 

      cout<<"Weeps!!"; 

   } 

}; 

int main() 

{ 

   Puppy puppy; 

cout<<"Puppy has "<<puppy.legs<<" legs"<<endl; 

cout<<"Puppy has "<<puppy.tail<<" tail"<<endl; 

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/06/Multilevel-inheritance.png


SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

cout<<"Puppy "; 

puppy.voiceAction(); 

cout<<" Puppy "; 

puppy.weeping(); 

} 

Output: 

Puppy has 4 legs 

Puppy has 1 tail 

Puppy Barks!!! Puppy Weeps!! 

Here we modified the example for Single inheritance such that there is a new class Puppy which 

inherits from the class Dog that in turn inherits from class Animal. We see that the class Puppy acquires 

and uses the properties and methods of both the classes above it. 

#4) Hybrid Inheritance 

Hybrid inheritance is depicted below. 

 

Hybrid inheritance is usually a combination of more than one type of inheritance. In the above 

representation, we have multiple inheritance (B, C, and D) and multilevel inheritance (A, B, and D) to 

get a hybrid inheritance. 

Let us see an example of Hybrid Inheritance. 

#include <iostream> 

#include <string> 

using namespace std; 

//Hybrid inheritance = multilevel + multilpe 

class student{ //First base Class 

                int id; 

                string name; 

                public: 

                void getstudent(){ 

                                cout << "Enter student Id and student name"; cin >> id >> name; 

   } 

}; 

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/06/Hybrid-inheritance.png


SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

class marks: public student{ //derived from student 

                protected: 

                int marks_math,marks_phy,marks_chem; 

                public: 

                void getmarks(){ 

                               cout << "Enter 3 subject marks:"; cin >>marks_math>>marks_phy>>marks_chem; 

   } 

}; 

class sports{ 

              protected: 

              int spmarks; 

              public: 

              void getsports(){ 

                              cout << "Enter sports marks:"; cin >> spmarks; 

   } 

}; 

class result : public marks, public sports{//Derived class by multiple inheritance// 

                int total_marks; 

                float avg_marks; 

                public : 

               void display(){ 

                             total_marks=marks_math+marks_phy+marks_chem; 

                             avg_marks=total_marks/3.0; 

  

                           cout << "Total marks =" << total_marks << endl; 

                           cout << "Average marks =" << avg_marks << endl; 

                           cout << "Average + Sports marks =" << avg_marks+spmarks; 

   } 

}; 

   

   

int main(){ 

                result res;//object// 

                res.getstudent(); 

                res.getmarks(); 

                res.getsports(); 

                res.display(); 

               return 0; 

} 

Output: 

Enter student Id and student name 25 Ved 

Enter 3 subject marks:89 88 87 

Enter sports marks:40 

Total marks =264 

Average marks =88 

Average + Sports marks =128 



SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

Here we have four classes i.e. Student, Marks, Sports, and Result. Marks are derived from the student 

class. The class Result derives from Marks and Sports as we calculate the result from the subject marks 

as well as sports marks. 

The output is generated by creating an object of class Result that has acquired the properties of all three 

classes. 

Note that in hybrid inheritance as well, the implementation may result in “Diamond Problem” which 

can be resolved using “virtual” keyword as mentioned previously. 

#5) Hierarchical Inheritance 

 

In hierarchical inheritance, more than one class inherits from a single base class as shown in the 

representation above. This gives it a structure of a hierarchy. 

Given below is the Example demonstrating Hierarchical Inheritance. 

#include <iostream> 

using namespace std; 

//hierarchical inheritance example 

class Shape                   // shape class -> base class 

{ 

public: 

int x,y; 

   

void get_data(int n,int m) { 

      x= n; 

      y = m; 

   } 

}; 

class Rectangle : public Shape // inherit Shape class 

{ 

public:  

int area_rect() { 

int area = x*y; 

return area; 

   } 

}; 

class Triangle : public Shape // inherit Shape class 

https://www.softwaretestinghelp.com/wp-content/qa/uploads/2019/06/hierarchical-inheritance.png


SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

{ 

public: 

int triangle_area() { 

float area = 0.5*x*y; 

return area; 

   } 

}; 

class Square : public Shape // inherit Shape class 

{ 

public: 

int square_area() { 

float area = 4*x; 

return area; 

   } 

}; 

int main() 

{ Rectangle r; 

   Triangle t; 

   Square s; 

   int length,breadth,base,height,side; 

   //area of a Rectangle 

   std::cout << "Enter the length and breadth of a rectangle: "; cin>>length>>breadth; 

   r.get_data(length,breadth); 

   int rect_area = r.area_rect(); 

   std::cout << "Area of the rectangle = " <<rect_area<< std::endl; 

   //area of a triangle 

   std::cout << "Enter the base and height of the triangle: "; cin>>base>>height; 

   t.get_data(base,height); 

   float tri_area = t.triangle_area(); 

   std::cout <<"Area of the triangle = " << tri_area<<std::endl; 

   //area of a Square 

   std::cout << "Enter the length of one side of the square: "; cin>>side; 

   s.get_data(side,side); 

   int sq_area = s.square_area(); 

   std::cout <<"Area of the square = " << sq_area<<std::endl; 

   return 0; 

} 

Output: 

Enter the length and breadth of a rectangle: 10 5 

Area of the rectangle = 50 

Enter the base and height of the triangle: 4 8 

Area of the triangle = 16 

Enter the length of one side of the square: 5 

Area of the square = 20 

The above example is a classic example of class Shape. We have a base class Shape and three classes 

i.e. rectangle, triangle, and square are derived from it. 



SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

19CST251 & Object Oriented Programming using C++                   By Mrs Devi G 

 

  

We have a method to read data in the Shape class while each derived class has its own method to 

calculate area. In the main function, we read data for each object and then calculate the area. 

 


