
Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC 
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF 

PROBLEM SOLVING AND C PROGRAMMING 
I YEAR - I SEM

UNIT 1 – Introduction to Problem Solving Techniques

TOPIC 5 – Algorithmic Problem Solving 

An Autonomous Institution

AICTE and Accredited by NAAC – UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

SOLVING AND C PROGRAMMING 

Introduction to Problem Solving Techniques

Algorithmic Problem Solving 



Algorithmic problem solving is solving
problem that require the formulation

algorithm for the solution.



process of finding the input of

very important to specify exactly

correct algorithm is not one that works
for all legitimate inputs.

Ascertaining the Capabilities of the Computational
instructions are executed one afterinstructions are executed one after
instructions are executed concurrently,

of the problem that the algorithm

exactly the set of inputs the algorithm

works most of the time, but

Computational Device:
after another, it is called sequentialafter another, it is called sequential

concurrently, it is called parallel algorithm



principal decision is to choose
approximately.

PROBLEM SOLVING

approximately.
this, the algorithms are classified

data structure:
structure plays a vital role in

Some of the algorithm design techniques
specifying a problem’s instance.

Algorithm+ Data structure=programs.

choose between solving the problem

PROBLEM SOLVING

classified as exact algorithm and

designing and analysis the algorithms
techniques also depend on the

Algorithm+ Data structure=programs.



algorithm design technique (or “strategy”
problems algorithmically that

different areas of computing.different areas of computing.
these techniques is of utmost importance

provide guidance for designing

Algorithms are the cornerstone of computer

“strategy” or “paradigm”) is a general
that is applicable to a variety

importance for the following reasons

designing algorithms for new problems,

computer science



Pseudocode:
Pseudocode is a mixture of a natural language and programming language
constructs.
Pseudocode is usually more precise than natural language, and its usage often yields Pseudocode is usually more precise than natural language, and its usage often yields 
more success in algorithm descriptions.
In the earlier days of computing, the dominant vehicle for specifying algorithms was a 
flowchart, a method of expressing an algorithm by a collection of connected geometric 
shapes containing descriptions of the algorithm’s steps.

Programming language:
Programming language can be fed into an electronic computer directly. 
Instead, it needs to be converted into a computer program written in a particular Instead, it needs to be converted into a computer program written in a particular 
computer language. 
We can look at such a program as yet another way of specifying the algorithm, although 
it is preferable to consider it as the algorithm’s implementation.

is a mixture of a natural language and programming language

is usually more precise than natural language, and its usage often yields is usually more precise than natural language, and its usage often yields 
more success in algorithm descriptions.
In the earlier days of computing, the dominant vehicle for specifying algorithms was a 
flowchart, a method of expressing an algorithm by a collection of connected geometric 
shapes containing descriptions of the algorithm’s steps.

Programming language can be fed into an electronic computer directly. 
Instead, it needs to be converted into a computer program written in a particular Instead, it needs to be converted into a computer program written in a particular 

We can look at such a program as yet another way of specifying the algorithm, although 
it is preferable to consider it as the algorithm’s implementation.



Once an algorithm has been specified, you have to prove its correctness. 

That is, you have to prove that the algorithm yields a required result for every 
finite amount of time.finite amount of time.

A common technique for proving correctness is to use 
algorithm’s iterations provide a natural sequence of steps needed for such proofs.

It might be worth mentioning that although tracing the algorithm’s performance for a few 
specific inputs can be a very worthwhile activity, it cannot prove the algorithm’s correctness 
conclusively.conclusively.

But in order to show that an algorithm is incorrect, you need just one instance of its input for 
which the algorithm fails.

Once an algorithm has been specified, you have to prove its correctness. 

yields a required result for every 

A common technique for proving correctness is to use mathematical induction
algorithm’s iterations provide a natural sequence of steps needed for such proofs.

It might be worth mentioning that although tracing the algorithm’s performance for a few 
specific inputs can be a very worthwhile activity, it cannot prove the algorithm’s correctness 

But in order to show that an algorithm is incorrect, you need just one instance of its input for 



algorithms are destined to be
.

Programming an algorithm presents bothProgramming an algorithm presents both

working program provides an additional
analysis (Pattern and Observations)

analysis is based on timing the
analyzing the results obtained.analyzing the results obtained.

ultimately implemented as

both a peril and an opportunity.both a peril and an opportunity.

additional opportunity in allowing
Observations) of the underlying algorithm

the program on several inputs



Efficiency.
efficiency:

Indicating how fast the algorithm runs
efficiency:efficiency:

Indicating how much extra memory

Simplicity.
An algorithm should be precisely defined and investigated with 
mathematical expressions.
Simpler algorithms are easier to understand and easier to program.Simpler algorithms are easier to understand and easier to program.
Simple algorithms usually contain fewer bugs.

runs.

memory it uses.

An algorithm should be precisely defined and investigated with 

Simpler algorithms are easier to understand and easier to program.Simpler algorithms are easier to understand and easier to program.
Simple algorithms usually contain fewer bugs.


