

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV ALGEBRAIC STRUCTURES

D LAGRANGE'S THEOREM!

Let G be a finite gloup of order 'n' & H be any subgroup of G. Then the order of H divides the order of G. (4) O(H)/O(G)

(or) The order of each subgroup of a finite years is a divisor of the order of the years.

Proof! Let (G,*) be a yeoup whose order is n.

(a) O(G) = n.

Let (H,*) be a subgroup of G whose order is m.

(i) O(H) = m

Let h, h2, h3 ..., hm be the m, different elements of H.

The right coset H = a of H & G is defined by

H = E f , * a , f = a , ..., f m * a g , a & G

Since there & a one - one correspondence bottom. The elts of H

and H = a , the elts of H = a are distinct.

Hence each eight coset q H In G has'm' distinct elts.

WHT any eight cosets q H in G are either disjoint or identical

The no. q distinct eight cosets q H in G are eithers

is finite (say k) [: G is finite]

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - IV ALGEBRAIC STRUCTURES

The union of these k distinct cosets
$$g H \text{ in } G$$
 is equal to G

Let thuse k distinct eight cosets be

 $H*a_1$, $H*a_2$, $H*a_3$..., $H*a_k$

Then $G = (H*a_1)U(H*a_2)U$... $U(H*a_k)$
 $\therefore O(G) = O(H*a_1) + O(H*a_2) + \ldots + O(H*a_k)$
 $n = m + m + \cdots + m$ ($u \text{ times}$)

 $n = km$
 $\Rightarrow k = \frac{n}{m}$ (u) $O(G) = k$

Since k is an integer (time), m is a divisor g n .

 $\Rightarrow O(H)$ is a divisor g $O(G)$
 $\Rightarrow O(H)$ divides $O(G)$.