UNIT -3

CONTROL SYSTEM REPRESENTATION

Signal Flow Graphs (SFGs)

It is a pictorial representation of a system that graphically displays the signal transmission in it.

Basic Definitions in SFGs:

- Input or source node: It is a node that has only outgoing branches i.e. node 'r' in Fig.6.1.
- **Output or sink node:** It is a node that has only incoming branches i.e. node 'c' in Fig.6.1.
- **Chain node:** It is a node that has both incoming and outgoing branches i.e. nodes 'x₁', 'x₂', 'x₃', 'x₄', 'x₅' and 'x₆' in Fig.6.1.
- Gain or transmittance: It is the relationship between variables denoted by two nodes or value of a branch. In Fig.6.1, transmittances are 't₁', 't₂', 't₃', 't₄', 't₅' and 't₆'.
- Forward path: It is a path from input node to output node without repeating any of the nodesin between them. In Fig.6.1, there are two forward paths, i.e. path-1:'r-x₁-x₂-x₃-x₄-x₅-x₆-c' and path-2:'r-x₁-x₃-x₄-x₅-x₆-c'.
- **Feedback path:** It is a path from output node or a node near output node to a node near inputnode without repeating any of the nodes in between them (Fig.6.1).
- Loop: It is a closed path that starts from one node and reaches the same node after trading through other nodes. In Fig.6.1, there are four loops, i.e. loop-1:'x₂-x₃-x₄-x₁', loop-2:'x₅-x₆- x₅', loop-3:'x₁-x₂-x₃-x₄-x₅-x₆-x₁' and loop-4:'x₁-x₃-x₄-x₅-x₆-x₁'.
- Self Loop: It is a loop that starts from one node and reaches the same node without trading through other nodes i.e. loop in node ' x_4 ' with transmittance ' t_{55} ' in Fig.6.1.
- Path gain: It is the product of gains or transmittances of all branches of a forward path. In Fig.6.1, the path gains are P₁ = t₁t₂t₃t₄t₅ (for path-1) and P₂ = t₉t₃t₄t₅ (for path-2).
- Loop gain: It is the product of gains or transmittances of all branches of a loop In Fig.6.1, there are four loops, i.e. L₁ = -t₂t₃t₆, L₂ = -t₅t₇, L₃ = -t₁t₂t₃t₄t₅t₈, and L₄ = -t₉t₃t₄t₅t₈.

- **Dummy node:** If the first node is not an input node and/or the last node is not an output nodethan a node is connected before the existing first node and a node is connected after the existing last node with unity transmittances. These nodes are called dummy nodes. In Fig.6.1, 'r' and 'c' are the dummy nodes.
- Non-touching Loops: Two or more loops are non-touching loops if they don't have any common nodes between them. In Fig.6.1, L₁ and L₂ are non-touching loops

Example:

Fig.1. Example of a SFG model

Properties SFGs:

- Applied to linear system
- Arrow indicates signal flow
- Nodes represent variables, summing points and take-off points
- Algebraic sum of all incoming signals and outgoing nodes is zero
- SFG of a system is not unique
- Overall gain of an SFG can be determined by using Mason's gain formula

SFG from block diagram model:

Let's find the SFG of following block diagram model shown in Fig.6.2.

Fig.2. Armature type speed control of a DC motor

Step-1: All variables and signals are replaced by nodes.

Step-2: Connect all nodes according to their signal flow.

Step-3: Each ofgains is replaced by transmittances of the branches connected between two nodes of the forward paths.

Step-4: Each ofgains is replaced by transmittances multiplied with (-1) of the branches connected between two nodes of the forward paths.

