UNIT -3

CONTROL SYSTEM REPRESENTATION

Signal Flow Graphs (SFGs)

It is a pictorial representation of a system that graphically displays the signal transmission in it.

Basic Definitions in SFGs:

- Input or source node: It is a node that has only outgoing branches i.e. node 'r' in Fig.6.1.
- Output or sink node: It is a node that has only incoming branches i.e. node 'c' in Fig.6.1.
- Chain node: It is a node that has both incoming and outgoing branches i.e. nodes ' x_{1} ', ' x_{2} ',' $x_{3}{ }^{\prime},{ }^{\prime} x_{4}$ ',' x_{5} 'and ' x_{6} ' in Fig.6.1.
- Gain or transmittance: It is the relationship between variables denoted by two nodes or value of a branch. In Fig.6.1, transmittances are ' t_{1} ', ' t_{2} ', ' t_{3} ', ' t_{4} ', ' t_{5} 'and ' t_{6} '.
- Forward path: It is a path from input node to output node without repeating any of the nodesin between them. In Fig.6.1, there are two forward paths, i.e. path-1:‘r-x1-x $x_{2}-$ $\mathrm{x}_{3}-\mathrm{x}_{4}-\mathrm{x}_{5}-\mathrm{X}_{6}-\mathrm{c}$ ' andpath -2 : $^{\prime} \mathrm{r}-\mathrm{x}_{1}-\mathrm{x}_{3}-\mathrm{x}_{4}-\mathrm{X}_{5}-\mathrm{x}_{6}-\mathrm{c}$ '.
- Feedback path: It is a path from output node or a node near output node to a node near inputnode without repeating any of the nodes in between them (Fig.6.1).
- Loop: It is a closed path that starts from one node and reaches the same node after trading through other nodes. In Fig.6.1, there are four loops, i.e. loop-1:' $x_{2}-x_{3}-x_{4}-x_{1}{ }^{\prime}$,

- Self Loop: It is a loop that starts from one node and reaches the same node without trading through other nodes i.e. loop in node ' x_{4} ' with transmittance 't55' in Fig.6.1.
- Path gain: It is the product of gains or transmittances of all branches of a forward path. In Fig.6.1, the path gains are $P_{1}=t_{1} t_{2} t_{3} t_{4} t_{5}$ (for path-1) and $P_{2}=t_{9} t_{3} t_{4} t_{5}$ (for path$2)$.
- Loop gain: It is the product of gains or transmittances of all branches of a loop In Fig.6.1, there are four loops, i.e. $L_{1}=-t_{2} t_{3} t_{6}, L_{2}=-t_{5} t_{7}, L_{3}=-t_{1} t_{2} t_{3} t_{4} t_{5} t_{8}$, and $L_{4}=-$ $t_{9} t_{3} t_{4} t_{5} t_{8}$.
- Dummy node: If the first node is not an input node and/or the last node is not an output nodethan a node is connected before the existing first node and a node is connected after the existing last node with unity transmittances. These nodes are called dummy nodes. In Fig.6.1, 'r' and 'c' are the dummy nodes.
- Non-touching Loops: Two or more loops are non-touching loops if they don't have any common nodes between them. In Fig.6.1, L_{1} and L_{2} are non-touching loops

Example:

Fig.1. Example of a SFG model

Properties SFGs:

- Applied to linear system
- Arrow indicates signal flow
- Nodes represent variables, summing points and take-off points
- Algebraic sum of all incoming signals and outgoing nodes is zero
- SFG of a system is not unique
- Overall gain of an SFG can be determined by using Mason's gain formula

SFG from block diagram model:

Let's find the SFG of following block diagram model shown in Fig.6.2.

Fig.2. Armature type speed control of a DC motor

Step-1: All variables and signals are replaced by nodes.
Step-2: Connect all nodes according to their signal flow.
Step-3: Each ofgains is replaced by transmittances of the branches connected between two nodes of the forward paths.

Step-4: Each ofgains is replaced by transmittances multiplied with (-1) of the branches connectedbetween two nodes of the forward paths.

