DEPARTMENT OF AIML

JBLEM SOLVING AND C PROGRAMMING

I YEAR - I SEM

1 - Introduction to Problem Solving Techniques

TOPIC 4 - Building Blocks of Algorithm

1 as a sequence of instructions that describe a solving a problem.
rds it is a step by step procedure for solving a
e written in simple English
d every instruction should be precise and tous.
ons in an algorithm should not be repeated
n should conclude after a finite number of ave an end point
results should be obtained only after the terminates.
ving are the primary factors that are often used to judge th execute a program, the computer system takes some amount of ti quired, the better is the algorithm.
To execute a program, computer system takes some amount o is the memory required, the better is the algorithm.

- Multiple algorithms may provide suitable or correct solutions to ese may provide more accurate results than others, and such al

```
Example
Write an algorithm to print „Good Morning"
Step 1: Start
Step 2: Print "Good Morning"
Step 3: Stop
```


gorithm is a part of the blue-print or pla

 uter program. gorithm is constructed using following blocl StatementsStates
Control flow
Function
e simple sentences written in algorithm for se.
may consists of assignment statements, Problem: Add two
statements, comment statements
ght include some of the following actions
information given to the program
a-perform operation on a given input
a - processed result

Step 1: Start
Step 2: Read A, E
Step 3: $\quad \mathrm{C}=\mathrm{A}+\mathrm{B}$
Step 4: Print C Step 5: Stop
value of ' a ' //This is input statement $\mathrm{c}=\mathrm{a}+\mathrm{b} / /$ This is assignment statement
zalue of $\mathrm{c} / /$ This is output statement statements are given after // symbol, which is the purpose of the line.
hm is deterministic automation for accomplishing a goal wh itial state, will terminate in a defined end-state. vords, Transition from one process to another process un ondition with in a time is called state. am will definitely have start state and end state

Problem: Add two numbers

```
Step 1: Start
Step 2: Read A, B
Step 3: C=A+B
Step 4: Print C
Step 5: Stop
```

flow which is also stated as flow of control, deter of code is to run in program at a given time.

re three types of flows, they are uential control flow

ection or Conditional control flow
pping, iteration or repetition control flow
2. Read the value of 'a'
3. Read the value of ' b '
4. Calculate sum $=a+b$
5. Print the sum of two number

6. Stop

allows the program to make "choice" between two alternate paths based on conditio d as decision structure.
is TRUE then
ome action
ITION is FALSE then ome action
iding the greater number
nen
. Print a is greater
se
Print b is greater
 ised for producing "loops" in program logic when one or more instructions may need to depending on condition.

NDITIONis true

block of organized, reusable code erform a single, related action. named as methods, sub-routines. oblems, the problem is been divided nd simpler tasks during algorithm

Functions
n in line of code
se
adability
ion hiding
lebug and test
d maintainability

Algorithm for addition of two numbers usir
Main function()
Step 1: Start
Step 2: Call the function add()
Step 3: Stop
sub function add()
Step 1: Function start
Step 2: Get a,bValues
Step 3: $\mathrm{add} \mathrm{c}=\mathrm{a}+\mathrm{b}$
Step 4: Print c
Step 5: Stop

Problem2:

ircle of radius r.
algorithm:
r of the Circle.
put:
f the Circle
he Radius r of the Circle
r // calculation of area

Write an algorithm to read two numbers Inputs to the algorithm:

First num1.
Second num2.
Expected output:
Sum of the two numbers.
Algorithm:
Step 1: Start
Step 2: Read input the first num1.
Step 3: Read \backslash input the second num2.
Step 4: Sum = num1+num2 // calculatio
Step 5: Print Sum
Step 6: Stop

Problem 4:

Find the largest number between A and B
Inputs to the algorithm:
A, B
Expected output:
Largest A or B
Algorithm:
Step 1: Start
Step 2:Read A, B
Step 3: If A is less than B, then
Big=B
Small=A
Print A is largest
Else

$$
\begin{aligned}
& \mathrm{Big}=\mathrm{A} \\
& \text { Small = B }
\end{aligned}
$$

Step 4: Write (Display) BIG, SMALL

Problem 6:

ent's average grade and ccessful or fail.

erm and final

id-term + final) $/ 2$
< 60) then
FAIL"

A algorithm to find the largest value of any

Step 1: Start
Step 2: Read/input A,B and C
Step 3: If $(A>=B)$ and $(A>=C)$ then $M a x=A$ Step 4: If $(B>=A)$ and $(B>=C)$ then $M a x=B$ Step 5:If $(C>=A)$ and $(C>=B)$ then $M a x=C$ Step 6: Print Max
Step 7: End

