

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Circle of Curvature

Find the soicle of curvature
$$(x+y)=\sqrt{a}$$
 at $(a/4, a/4)$ soln.

We know that $y, = -1$
 $y_2 = \frac{a}{a}$
 $\therefore f = \frac{a}{\sqrt{2}}$

To find $x \neq y$:

 $\overline{x} = x - \frac{y_1(1+y_1^2)}{y_2} = x + \frac{1(1+c_1x^2)}{4/a}$
 $= x + \frac{a}{x} \times \frac{a}{4}$
 $\overline{x} = x + \frac{a}{x} \times \frac{a}{4}$
 $\overline{y} = y + \frac{11+y_1^2}{y_2} = y + \frac{11+11}{4/a}$
 $= \frac{1}{3} + \frac{a}{2}$

At $(a/4, a/4)$, $\overline{x} = \frac{a}{4} + \frac{a}{2} = \frac{3a}{4}$

captre of curvature $c(\overline{x}, \overline{y}) = c(\frac{3a}{4}, \frac{3a}{4})$

controlle of curvature $(x - \overline{x})^2 + (y - \overline{y})^2 = f^2$
 $(x - \frac{3a}{4})^2 + (y - \frac{3a}{4})^2 = (\frac{a}{x})^2$

Find the cords of curvature $y^2 = 12x$ at $(3,6)$

Soln:

Given, $y^2 = 12x$
 $y = \frac{dy}{dx} = 12 \Rightarrow \frac{dy}{dx} = \frac{12}{2y} = \frac{6}{y}$

(An Autonomous Institution)

Coimbatore-641035.

Unit 3-Differential Calculus

Circle of Curvature

$$\frac{d^{2}y}{dx^{2}} = \frac{6}{y^{2}}$$
A+ (3,6), $y_{1} = 1$, $y_{2} = -\frac{1}{6}$

$$P = \frac{[J+1]^{3/2}}{-J_{6}} = -6(2^{3/2}) = 2\sqrt{2}(-6)$$

$$= -12\sqrt{2}$$

$$f = 12\sqrt{2}$$

$$\overline{x} = x - \frac{y_{1}}{y_{2}} = x - \frac{1[J+1]}{-J_{6}}$$

$$= x + 6(2)$$

$$= x + 12$$

$$\overline{y} = y + \frac{[J+y^{2}]}{y_{2}} = y + \frac{[J+J]}{-J_{6}} = y - 12$$
At (3,6), $\overline{x} = 3 + 12 = 15$

$$\overline{y} = 6 - 12 = -6$$
Contress quarrature $(x - \overline{x})^{2} + (y - \overline{y})^{2} = f^{2}$

$$c. (x - 15)^{2} + (y + 6)^{2} = [12\sqrt{2}]^{2}$$

$$x + y^{4} = 2 \text{ at } (1,1)$$

$$x^{4} + y^{4} = 2 \text{ at } (1,1)$$

$$\sqrt{x} + \sqrt{y} = 1 \text{ at } (X_{4}, X_{4})$$

$$c. (x - 15)^{2} + (x - 15)^{2} + (x - 15)^{2} = (x - 15)^{2} + (x - 15)^{2} = (x - 15)^{2} = (x - 15)^{2} + (x - 15)^{2} = (x - 15$$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Circle of Curvature

A. Fried the corcle of curvature for
$$x^3 + y^2 = 3a \times y$$
 at $(\frac{3a}{2}, \frac{3a}{2})$.

golin.

WHT $\frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax}$

At $(\frac{3a}{2}, \frac{3a}{2})$ $\frac{d^4y}{dx^2} = -1$

$$\frac{d^2y}{dx^2} = -\frac{3a}{3a}$$

$$= -\frac{3}{3}\frac{3a}{3a} = -\frac{3}{3}\frac{3a}{3a}$$

$$= -\frac{3\sqrt{3}a}{16}$$

$$\therefore P = \frac{3\sqrt{3}a}{16}$$

$$\therefore P = \frac{3\sqrt{3}a}{16}$$

$$\therefore P = \frac{3\sqrt{3}a}{32} = -\frac{3\sqrt{3}a}{32}$$

$$= x - \frac{y_1}{1} \frac{[1 + y_1^2]}{y_2} = x + \frac{[(1 + (-1)^2)]}{-32/3a}$$

$$= x - \frac{3a}{32} (2)$$

$$x = x - \frac{3a}{32} (2)$$

$$y = y - \frac{3a}{32} (2)$$

$$y = y - \frac{3a}{32} (2)$$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Circle of Curvature

At
$$(\frac{3a}{2}, \frac{3a}{2})$$
, $\bar{x} = \frac{3a}{2} - \frac{3a}{16} = \frac{24a - 3a}{16}$
 $\bar{x} = \frac{21a}{16}$

and $\bar{y} = \frac{3a}{2} - \frac{3a}{16} = \frac{21a}{16}$

Centre of univature $C(\bar{x}, \bar{y}) = C(\frac{21a}{16}, \frac{21a}{16})$

Corcle of curivature $(x - \bar{x})^2 + (y - \bar{y})^2 = P^2$
 $(x - \frac{21a}{16})^2 + (y - \frac{21a}{16})^2 = (\frac{3\sqrt{2}a}{16})^2$