
VIJAYALAKSHMI.N/ AP/CSE/SNSCT

Constants and Operators

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

Types of Constants in C

Type of Constants Data type Example of Data type

Octal constant int Example: 013 /*starts with 0 */

Hexadecimal constant int Example: 0x90 /*starts with 0x*/

character constants char Example: 'X', 'Y', 'Z'

string constants char Example: “PQRS”, “ABCD”

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

What is a constant in C?

As the name suggests, a constant in C is a variable that
cannot be modified once it is declared in the program.
We can not make any change in the value of the constant
variables after they are defined.

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

How to Define Constant in C?

We define a constant in C language using the const keyword. Also
known as a const type qualifier, the const keyword is placed at the
start of the variable declaration to declare that variable as a constant.

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

Defining Constant using #define Preprocessor

We can also define a constant in C using #define preprocessor. The
constants defined using #define are macros that behave like a constant.
These constants are not handled by the compiler, they are handled by the
preprocessor and are replaced by their value before complication.

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

// C Program to define a constant using #define
#include <stdio.h>
#define pi 3.14

int main()
{

printf("The value of pi: %.2f", pi);
return 0;

}

Output
The value of pi: 3.14

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

What are Operators in C?

Operators can be defined as the symbols that help us to perform specific
mathematical, relational, bitwise, conditional, or logical computations
on operands. In other words, we can say that an operator operates the
operands. For example, ‘+’ is an operator used for addition, as shown
below:

c = a + b;

Here, ‘+’ is the operator known as the addition operator, and ‘a’ and ‘b’
are operands. The addition operator tells the compiler to add both of
the operands ‘a’ and ‘b’. The functionality of the C programming
language is incomplete without the use of operators.

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

The above operators have been discussed in detail:

1. Arithmetic Operations in C
These operators are used to perform arithmetic/mathematical
operations on operands. Examples: (+, -, *, /, %,++,–). Arithmetic
operators are of two types:

a) Unary Operators:
Operators that operate or work with a single operand are unary
operators. For example: Increment(++) and Decrement(–) Operators

int val = 5;
cout<<++val; // 6

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

b) Binary Operators:
Operators that operate or work with two operands are binary operators.
For example: Addition(+), Subtraction(-), multiplication(*), Division(/)
operators

int a = 7;
int b = 2;
cout<<a+b; // 9

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

2. Relational Operators in C

These are used for the comparison of the values of two operands. For
example, checking if one operand is equal to the other operand or not,
whether an operand is greater than the other operand or not, etc.
Some of the relational operators are (==, >= , <=)

int a = 3;
int b = 5;
printf(a < b);
// operator to check if a is smaller than b

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

3. Logical Operator in C
Logical Operators are used to combining two or more
conditions/constraints or to complement the evaluation of the
original condition in consideration. The result of the operation
of a logical operator is a Boolean value either true or false.

For example, the logical AND represented as the ‘&&’ operator
in C returns true when both the conditions under consideration
are satisfied. Otherwise, it returns false. Therefore, a && b
returns true when both a and b are true (i.e. non-zero)(See this
article for more reference).

cout<<((4 != 5) && (4 < 5)); // true

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

4. Bitwise Operators in C

The Bitwise operators are used to perform bit-level operations on the operands. The operators are
first converted to bit-level and then the calculation is performed on the operands. Mathematical
operations such as addition, subtraction, multiplication, etc. can be performed at the bit level for
faster processing. For example, the bitwise AND operator represented as ‘&’ in C takes two
numbers as operands and does AND on every bit of two numbers. The result of AND is 1 only if
both bits are 1(True).

int a = 5, b = 9; // a = 5(00000101), b = 9(00001001)
cout << (a ^ b); // 00001100
cout <<(~a); // 11111010

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

5. Assignment Operators in C
Assignment operators are used to assign value to a variable. The left side operand of the assignment
operator is a variable and the right side operand of the assignment operator is a value. The value on
the right side must be of the same data type as the variable on the left side otherwise the compiler
will raise an error.

Different types of assignment operators are shown below:

a) “=”
This is the simplest assignment operator. This operator is used to assign the value on the right to the
variable on the left.
Example:

a = 10;
b = 20;
ch = 'y';

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

b) “+=”
This operator is the combination of the ‘+’ and ‘=’ operators. This operator first adds the current value
of the variable on left to the value on the right and then assigns the result to the variable on the left.
Example:

(a += b) can be written as (a = a + b)
If initially value stored in a is 5. Then (a += 6) = 11.
c) “-=”
This operator is a combination of ‘-‘ and ‘=’ operators. This operator first subtracts the value on the
right from the current value of the variable on left and then assigns the result to the variable on the
left.
Example:

(a -= b) can be written as (a = a - b)
If initially value stored in a is 8. Then (a -= 6) = 2.

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

d) “*=”
This operator is a combination of the ‘*’ and ‘=’ operators. This operator first multiplies the
current value of the variable on left to the value on the right and then assigns the result to the
variable on the left.
Example:

(a *= b) can be written as (a = a * b)
If initially, the value stored in a is 5. Then (a *= 6) = 30.
e) “/=”
This operator is a combination of the ‘/’ and ‘=’ operators. This operator first divides the current
value of the variable on left by the value on the right and then assigns the result to the variable
on the left.
Example:

(a /= b) can be written as (a = a / b)
If initially, the value stored in a is 6. Then (a /= 2) = 3.

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

6. Other Operators

Apart from the above operators, there are some other operators
available in C used to perform some specific tasks. Some of them are
discussed here:

i. sizeof operator
sizeof is much used in the C programming language.
It is a compile-time unary operator which can be used to compute the
size of its operand.
The result of sizeof is of the unsigned integral type which is usually
denoted by size_t.

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

// C Program to Demonstrate the working concept of
// Operators
#include <stdio.h>

int main()
{

int a = 10, b = 5;
// Arithmetic operators
printf("Following are the Arithmetic operators in C\n");
printf("The value of a + b is %d\n", a + b);
printf("The value of a - b is %d\n", a - b);

printf("The value of a * b is %d\n", a * b);
printf("The value of a / b is %d\n", a / b);
printf("The value of a % b is %d\n", a % b);
// First print (a) and then increment it
// by 1
printf("The value of a++ is %d\n", a++);

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

// First print (a+1) and then decrease it
// by 1
printf("The value of a-- is %d\n", a--);

// Increment (a) by (a+1) and then print
printf("The value of ++a is %d\n", ++a);

// Decrement (a+1) by (a) and then print
printf("The value of --a is %d\n", --a);

// Assignment Operators --> used to assign values to
// variables int a =3, b=9; char d='d';

// Comparison operators
// Output of all these comparison operators will be (1)
// if it is true and (0) if it is false
printf(

"\nFollowing are the comparison operators in C\n");
printf("The value of a == b is %d\n", (a == b));
printf("The value of a != b is %d\n", (a != b));
printf("The value of a >= b is %d\n", (a >= b));
printf("The value of a <= b is %d\n", (a <= b));
printf("The value of a > b is %d\n", (a > b));
printf("The value of a < b is %d\n", (a < b));

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

// Logical operators
printf("\nFollowing are the logical operators in C\n");
printf("The value of this logical and operator ((a==b) "

"&& (a<b)) is:%d\n",
((a == b) && (a < b)));

printf("The value of this logical or operator ((a==b) "
"|| (a<b)) is:%d\n",
((a == b) || (a < b)));

printf("The value of this logical not operator "
"(!(a==b)) is:%d\n",
(!(a == b)));

return 0;
}

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

Output
Following are the Arithmetic operators in C
The value of a + b is 15
The value of a - b is 5
The value of a * b is 50
The value of a / b is 2
The value of a % b is 0
The value of a++ is 10
The value of a-- is 11
The value of ++a is 11
The value of --a is 10

Following are the comparison operators in C
The value of a == b is 0
The value of a != b is 1
The value of a >= b is 1
The value of a <= b is 0
The value of a > b is 1
The value of a < b is 0

VIJAYALAKSHMI.N/ AP/CSE/SNSCT

Following are the logical operators in C
The value of this logical and operator ((a==b) && (a<b)) is:0
The value of this logical or operator ((a==b) || (a<b)) is:0
The value of this logical not operator (!(a==b)) is:1

