

(An Autonomous Institution)

Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

2.			0		$y = e^{x} at(0,1)$
Sol <u>n</u> . -P-	[1+	$\left(\frac{dy}{dx}\right)^{3}$	2		the pt where it
1 -		R y	_	9	$x^{(2)} = x^{(2)} = x^{(2)} = x^{(2)}$
Las la	C	122			5. 76, 12
Given. $y = e^{\chi}$ $\frac{dy}{dx} = e^{\chi}$					
dz	2 = 1 x				
At (0, 1)	>	$\frac{dy}{dx} = 1$			
and $\frac{d}{d}$	ay Ira :	= e 2			
At 10,1),		$\frac{dy}{dx^2} = 1$			

(An Autonomous Institution)

Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

$$\therefore P = \frac{[1+1]}{1} = 2^{\frac{3}{2}} = 2\sqrt{2}$$
Huy J Find the loadies of univative at $x = \frac{1}{2}$
on the curve $y = ASTD \times (\frac{1}{4})$

$$= J. \quad y = c \log \sec(\frac{1}{c}) \quad (\csc 2^{-y}c)$$

$$= J. \quad y = c \log \sec(\frac{1}{c}) \quad (\csc 2^{-y}c)$$

$$= J. \quad find \quad satisfy = 0 \quad c \approx \frac{1}{2} + \frac{(dy)^2}{dx^2} = \frac{3}{2}$$

$$= \frac{d^2y}{dx} = -y$$

$$= \frac{dy}{dx} = -y$$

$$= \frac{dy}{dx} = -\frac{y}{dx} \rightarrow (2)$$

$$= \frac{d^2y}{dx} = -\frac{y}{dx} = -\frac{y}{dx}$$

$$= \frac{d^2y}{dx} = -\frac{y}{dx}$$

Contract of the

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

$$\therefore P = \frac{[1+c_{13}x]^{3/2}}{2/c}$$

$$= \frac{(1+r)^{3/2}}{2/c}$$

$$= 2^{3/2} \frac{c}{2}$$

$$= 2\sqrt{2} \frac{c}{2}$$

$$= 2\sqrt{2} \frac{c}{2}$$

$$= 2\sqrt{2} \frac{c}{2}$$

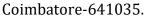
$$= 2\sqrt{2} \frac{c}{2}$$

$$= 2\sqrt{2}$$

$$= 2\sqrt{2}$$

$$= 2\sqrt{2}$$

$$= 2\sqrt{2}$$


$$= 2\sqrt{2}$$

$$\Rightarrow y^{3/2} = (\sqrt{2})^{3/2}$$

$$= (\sqrt{2})^{3/2}$$

(An Autonomous Institution)

Unit 3-Differential Calculus

Radius of Curvature

$$A \pm \left(\frac{9}{4}, \frac{9}{4}\right),$$

$$\frac{d^{2}y}{dx^{2}} = -\frac{\sqrt{a}}{2} \frac{1}{2\sqrt{a}} (-1) + \frac{\sqrt{a}}{2} - \frac{1}{2\sqrt{a}} \frac{1}{2}$$

$$= \frac{\sqrt{a}}{2} + \frac{\sqrt{a}}{2\sqrt{a}}$$

$$= \frac{4}{a}$$

$$\therefore P = \frac{\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{3/2}}{\frac{d^{2}y}{dx^{2}}}$$

$$= \frac{51 + (-1)^{2}}{41a}$$

$$= \frac{2\sqrt{a}}{\sqrt{a}}$$

$$= \frac{2}{\sqrt{a}}$$

$$= \frac{2}{\sqrt{a}}$$

$$= \frac{2}{\sqrt{a}}$$

$$= \frac{2}{\sqrt{a}}$$

$$= \frac{2}{\sqrt{a}}$$

$$(M)$$

$$= \frac{a}{\sqrt{a}}$$

$$= \frac{a}{\sqrt{a}}$$

$$(M)$$

$$= \frac{a}{\sqrt{a}}$$

$$(M)$$

$$= \frac{a}{\sqrt{a}}$$

$$(M)$$

$$= \frac{a}{\sqrt{a}}$$

$$(M)$$

$$(M$$

cs Scanned with CamScanner

dre

ax

(An Autonomous Institution)

Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

$$M \left(\frac{3a}{2}, \frac{3a}{2}\right), \quad \frac{dy}{dx} = \frac{a \cdot \frac{3a}{2} - \frac{qa^2}{4}}{\frac{qa^2}{4} - a \cdot \frac{3a}{2}}$$

$$= \frac{ba^2 - qa^2}{qa^2 - ba^2}$$

$$= -1$$

$$\frac{d^2 y}{dx^2} = \frac{(y^2 - ax)[a \frac{dy}{dx} - 2x] - [ay - x^2][2y \frac{dy}{dx} - a]}{(y^2 - ax)^2}$$

$$A \ddagger \left(\frac{3a}{2}, \frac{3a}{2}\right), \quad \frac{d^2 y}{dx^2} = -\frac{3a}{3a}$$

$$T = \frac{[1+ij]^{3/2}}{-3j/3} = \frac{2\sqrt{3} \times 3a}{-32}$$

$$= -\frac{3\sqrt{3}a}{16}$$

$$P = \frac{3\sqrt{3}a}{16}$$

$$P = \frac{3\sqrt{3}a}{16}$$

$$GI, \text{ Find the sales of worksture of } y = \frac{ax}{a+x} + 5$$
hence $9 \text{ for the field us (\frac{3a}{4})^{3/3} = \left(\frac{y}{2}\right)^2 + \left(\frac{x}{2}\right)^2$

$$Givn, \quad y = \frac{ax}{a+x}$$

$$\frac{dy}{dx} = \frac{(a+x)^3 - a - ax(i)}{(a+x)^2} = \frac{a^2}{(a+x)^2}$$

$$\frac{d^2y}{dx^2} = \frac{(a+x)^3 - a^2 \cdot 2(a+x)}{(a+x)^4} = -\frac{aa^2}{(a+x)^3}$$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

$$\begin{aligned} \mathcal{P} &= \left[\frac{1+\left[\frac{a^2}{(a+x)^3}\right]^a}{\left[\frac{a+x^3+a^{h}}{(a+x)^3}\right]^{\frac{a}{2}/a}} \\ &= \frac{-\frac{2a^a}{(a+x)^3}}{\left[\frac{(a+x)^4+a^{h}}{(a+x)^3}\right]^{\frac{a}{2}/a}} = \frac{\left[\frac{(a+x^3+a^{h})}{(a+x)^{\frac{a}{2}/2}} \times \frac{(a+x)^3}{-aa^3}\right]}{= \frac{\left[\frac{(a+x)^4+a^{h}}{(a+x)^6}\right]^{\frac{a}{2}/a}}{\left[\frac{(a+x)^4+a^{h}}{(a+x)^6}\right]^{\frac{a}{2}/a}} \\ &= \frac{\left[\frac{(a+x)^4+a^{h}}{(a+x)^6}\right]^{\frac{a}{2}/a}}{2a^a(a+x)^3} \\ \stackrel{\mathcal{P}}{=} = \frac{\left[\frac{(a+x)^4+a^{h}}{a}\right]^{\frac{a}{2}/a}}{2a^a(a+x)^3} \\ \stackrel{\mathcal{P}}{=} = \frac{\left[\frac{(a+x)^4+a^{h}}{a}\right]^{\frac{a}{2}/a}}{2a^a(a+x)^3} \\ \stackrel{\mathcal{P}}{=} = \frac{a}{a} \cdot \frac{\left[\frac{(a+x)^4+a^{h}}{a^3}\right]^{\frac{a}{2}/a}}{2a^a(a+x)^3} \\ &= \frac{-\left[\frac{(a+x)^4+a^{h}}{a^3}\right]^{\frac{a}{2}/a}}{a^2(a+x)^3} \\ \stackrel{\mathcal{P}}{=} \frac{a}{a} \cdot \frac{\left[\frac{(a+x)^4+a^{h}}{a^3}\right]^{\frac{a}{2}/a}}{a^2(a+x)^3} \\ \stackrel{\mathcal{P}}{=} \frac{a^a}{a} \cdot \frac{\left[\frac{(a+x)^4+a^{h}}{a^2}\right]^{\frac{a}{2}/a}}{a^2(a+x)^2} \\ &= \frac{-\left[\frac{(a+x)^4+a^{h}}{a^2}\right]^{\frac{a}{2}/a}}{a^2(a+x)^2} \\ &= \frac{(a+x)^4}{a^2(a+x)^2} + \frac{a^{h}}{a^2(a+x)^2} \\ &= \frac{(a+x)^4}{a^2(a+x)^2} + \frac{a^{h}}{a^2(a+x)^2} \\ &= \frac{(a+x)^4}{a^2} + \frac{a^2}{a^2} \\ &= \frac{x^2}{y^2} + \frac{y^2}{x^2} + \frac{y^2}{x^2} + \frac{[\frac{a}{2}]^2}{[\frac{a}{2}]^2} + \left[\frac{y}{x}\right]^2 \end{aligned}$$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

J. Find the radius of watwat whe at (-2,0) on
$y^{2} = x^{3} + 8$. Soln.
80/n.
$Gy_{D}, y^{\mathcal{R}} = \chi^{3} + \mathcal{E}$
$ay \frac{dy}{dz} = 3x^{\alpha}$
$dy = 3\pi^2$
$\frac{\partial y}{\partial x} = 3x^{2}$ $\frac{\partial y}{\partial x} = \frac{3x^{2}}{ay}$
$A \neq (-a, 0), \frac{dy}{dx} = \infty$
Now, $y^2 = x^3 + 8$
$\Rightarrow x^3 = y^2 - 8$
$3x^3 \frac{dx}{dy} = xy$
$\frac{dx}{dx} = \frac{2y}{dx}$
$\frac{dx}{dy} = \frac{ay}{3x^{a}}$
$A + (-2, 0), \frac{dx}{dx} = 0$
a start and and and and a start a sta
cs Scanned with CamScanner

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

$$\frac{d^{2}x}{dy^{2}} = \frac{3x^{2}(2) - 2y \cdot 6x \cdot \frac{dx}{dy}}{ax^{4}}$$

$$= \frac{6x^{2} - 12xy}{dx} \frac{dx}{dy}$$

$$qx^{4}$$

$$A \pm (-2,0), \quad \frac{d^{2}x}{dy^{2}} = \frac{6(4) - 0}{q(-2)^{4}} = \frac{24}{qx^{16}} = \frac{1}{6}$$

$$WBT, \quad f = \left[1 + \left(\frac{dx}{dy}\right)^{2}\right]^{\frac{3}{2}}$$

$$\frac{d^{2}x}{dy^{2}}$$

$$\frac{d^{2}x}{dy^{2}}$$

$$\frac{d^{2}x}{dy^{2}}$$

$$\frac{d^{2}x}{dy^{2}}$$

$$\frac{d^{2}x}{dy^{2}}$$

$$\frac{d^{2}x}{dy^{2}}$$

$$\frac{d^{2}x}{dy^{2}}$$

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Radius of Curvature

Find the ladeus of white of $y = \cosh(\frac{x}{c})$ 11. Soln. Girn. $y = \cosh\left(\frac{x}{c}\right)$ $y_{1} = SP_{h}h(\frac{x}{c})\cdot \frac{1}{c}$ $\frac{4}{2} = \cosh\left(\frac{\alpha}{c}\right) \cdot \frac{1}{c^{\alpha}}$ $\therefore f = \left\{i + \left[S_{7h}h\left(\frac{\alpha}{c}\right) \cdot \frac{1}{c}\right]^{2}$ 73/2 $F = \left[\frac{1}{c^{2}} \cdot \cos h\left(\frac{\pi}{c}\right) - \frac{3}{c^{2}}\right]^{3/2} \qquad y = c \log s \cos \frac{\pi}{c^{2}}$ $= \left[\frac{1}{c^{2}} + s^{2}hh^{2}\left(\frac{\pi}{c}\right) - \frac{1}{c^{2}}\right]^{3/2} \qquad g = c \log s \cos \frac{\pi}{c^{2}}$ $= \frac{1}{c^{2}} \cos h\left(\frac{\pi}{c}\right) - \frac{1}{c^{2}}\right]^{3/2} \qquad g = c \log s \cos \frac{\pi}{c^{2}}$ $= \frac{1}{c^{2}} \cos h\left(\frac{\pi}{c}\right) - \frac{1}{c^{2}} - \frac{1}{c^{2}}\right]^{3/2} \qquad g = c \log s \cos \frac{\pi}{c^{2}}$