UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation
Reduce the quadratic form $2 x_{1}^{2}+2 x_{2}^{2}+x_{3}^{2}+4 x_{1} x_{2}=0$ to canonical form by orthogonal reduction .Find rank, index, signature and nature

Step 1:

The matrix form is

$$
A=\left[\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Step 2:

Characteristic equation ,Eigen values, Eigen vectors
$\mathrm{C}_{1}=$ Sum of leading diagonal elements

$$
=2+2+1=5
$$

$\mathrm{C}_{2}=$ Sum of minors of leading diagonal elements

$$
=4
$$

$\mathrm{C}_{3}=|A|$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =0
\end{aligned}
$$

The characteristic equation is

$$
\lambda^{3}-5 \lambda^{2}+4 \lambda=0
$$

The eigen values are $0,1,4$

The eigen vectors are $(A-\lambda I) X=0$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation
$\left[\left(\begin{array}{lll}2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)-\lambda\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$

$\left(\begin{array}{ccc}2-\lambda & 2 & 0 \\ 2 & 2-\lambda & 0 \\ 0 & 0 & 1-\lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
$\left(\begin{array}{lll}2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$

CASE (i)

When $\lambda=0$

$$
\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

The cofactor of first row elements are $\left(\begin{array}{c}2 \\ -2 \\ 0\end{array}\right)$ ie $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$
The Eigen vector when $\lambda=0$ is $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$

CASE (ii)

When $\lambda=1$

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

The cofactor of third row elements are $\left(\begin{array}{c}0 \\ 0 \\ -3\end{array}\right)$ ie $\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL

Reduction of quadratic form to canonical form by orthogonal transformation
The Eigen vector when $\lambda=1$ is $\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$

CASE (iii)

When $\lambda=4$

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=0
$$

The cofactor of first row elements are $\left(\begin{array}{l}6 \\ 6 \\ 0\end{array}\right)$ ie $\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$

The Eigen vector when $\lambda=4$ is $\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$

STEP 3:

To check pair wise orthogonality

$$
\begin{aligned}
& X_{1}^{T} X_{2}=\left(\begin{array}{lll}
2 & -2 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)=0 \\
& X_{2}^{T} X_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=0 \\
& X_{3}^{T} X_{1}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right)=0
\end{aligned}
$$

STEP 4:

To find normalized vector

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation

Eigen vector	$1(\mathrm{x})=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$	Normalized vector $=\left(\begin{array}{l}x_{1} / l\left(x_{1}\right) \\ x_{2} / l\left(x_{2}\right) \\ x_{3} / l\left(x_{3}\right)\end{array}\right)$
$\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$	$\sqrt{1+1+0}=\sqrt{2}$	$\left(\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2} \\ 0\end{array}\right)$
$\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$	$\sqrt{0+0+1}=\sqrt{1}$	$\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$
$\left(\begin{array}{c}1 \\ 1 \\ 0\end{array}\right)$	$\sqrt{1+1+0}=\sqrt{2}$	$\left(\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right)$

STEP 5:

Normalized modal matrix

$$
\begin{aligned}
& \mathrm{N}=\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & -1 & 0
\end{array}\right] \\
& \mathrm{N}^{\mathrm{T}}=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & -1 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1
\end{array}\right]
\end{aligned}
$$

STEP 6:

$$
\mathrm{NN}^{\mathrm{T}}=\mathrm{N}^{\mathrm{T}} \mathrm{~N}=\mathrm{I}
$$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation

$$
\begin{aligned}
\mathrm{N}^{\mathrm{T}} \mathrm{~N} & =\left(\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & -1 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 / / \sqrt{2} & 0 & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & -1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\mathrm{I}
\end{aligned}
$$

STEP 7:

To find diagonalyze matrix

$$
\begin{aligned}
\mathrm{N}^{\mathrm{T}} \mathrm{AN} & =\mathrm{D} \\
\mathrm{~N}^{\mathrm{T}} \mathrm{~A} & =\left(\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & -1 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
4 / \sqrt{2} & 4 / \sqrt{2} & 0
\end{array}\right) \\
\mathrm{N}^{\mathrm{T}} \mathrm{AN} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
4 / \sqrt{2} & 4 / \sqrt{2} & 0
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & -1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right) \\
& =\mathrm{D}
\end{aligned}
$$

UNIT 2 - ORTHOGONAL TRANSFORMATION OF A REAL SYMMETRIC MATRIX

Reduction of quadratic form to canonical form by orthogonal transformation
Step 8:
$Y^{T} D Y=0$
$0 y_{1}^{2}+y_{2}^{2}+4 y_{3}^{2}=0$

The index $\mathrm{p}=2$

Rank r=2

Signature $\mathrm{s}=2 \mathrm{p}-\mathrm{r}=2$

The nature is semi positive

