

SNS COLLEGE OF TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University

Accredited by NBA & Accrediated by NAAC with 'A++' Grade,

Recognized by UGC saravanampatti (post), Coimbatore-641035.

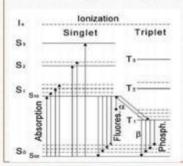
Department of Biomedical Engineering

Course Name: 19BME301 - Medical Physics

III Year: V Semester

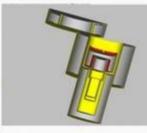
Unit IV – PRINCIPLES OF RADIATION DETECTOR

History


➤ The modern electronic scintillation counter was invented in 1944 by <u>Sir Samuel Curran(UK)</u>

Previously scintillation events had to be laboriously detected by eye using a spinthariscope which was a simple microscope to observe light flashes in the scintillator

What is Scintillation?


The *emission of flouroscene* in a phosphor by *absorption* of charged particle or high energy photons

Principle:

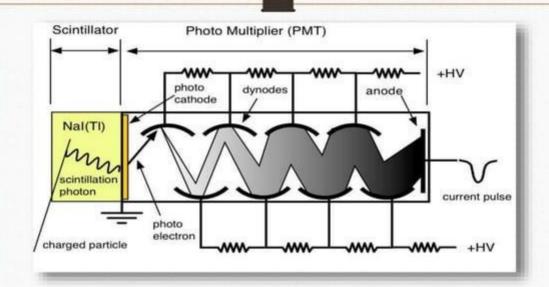
- Scintillation counter is an instrument that is used for detect and measuring ionising radiation
- It comprises of the scintillator that generates photons by excitation effect in response to incident radiation and detecting the resultant light pulses

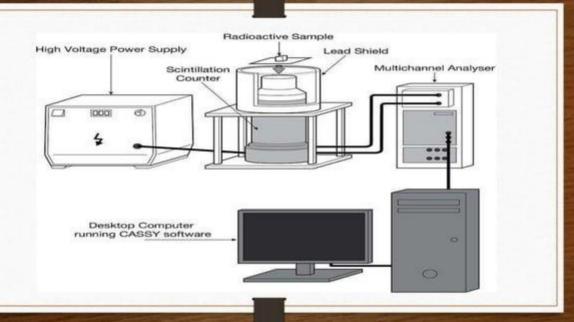
WORKING

Radiation strike the crystal

Photoelectron emitted by scintillator

the electron move cathode to anode through dynode




Scintillation Counter

Electric pulse amplified and delivered

Electric pulse delivered to PM

Types of scintillator:

Cesium iodide (CsI) detection of protons and alpha particles.

Sodium iodide (NaI) containing a small amount of thallium detection of gamma waves

zinc sulfide (ZnS) detector of alpha particles(Zinc sulfide is the material Rutherford used to perform his scattering experiment.)

<u>Lithium iodide</u> (LiI) is used in *neutron* detectors.

Applications

Scintillation counters are used to measure radiation in a variety of applications.

- Hand held radiation survey meters
- Personnel and environmental monitoring for Radioactive contamination.
- Medical imaging.
- National and homeland security.
- Border security.
- Nuclear plant safety.
- Oil well lodging.

QUESTN.....

Which is the correct representation for "SINGLET" & "TRIPLET"?

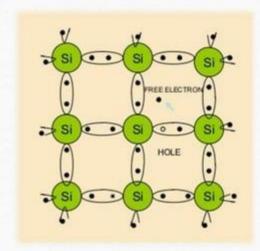
- A) †
- B) |
- C)
- D) Џ
- E) † †
- F)

Ans:

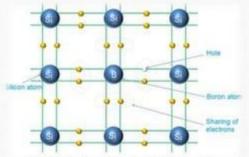
SINGLET =B TRIPLET =D,E

SEMICONDUTOR DEDUCTOR

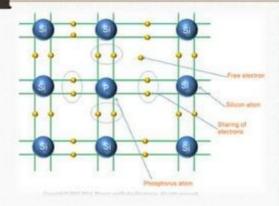
Semiconductor detector

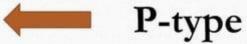

- A detector which is used to detect the ionising radiation by using semiondutors (usually silicon or germanium)
- The detecting is a single crystal consisting of a sandwich of *intrinsic silicon* between a P-Type layer and N-Type layer forming p-i-n diode.

Semiconductor in *pure form* is known as *intrinsic* semiconductor

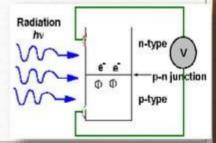

Ex : pure Silion and pure Germanium

at room temperature no of electron equal to number of holes

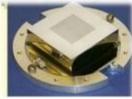


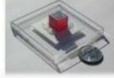

N- type

Principal Street (Street & Street & Str



Detection mechanism


When the *radiation interact with silicon* crystal they excite elelctron from the valence band into the condution band *creating a eletron – hole pair.*


When a reverse bias potential is applied to the crystal, the eletrons and holes are separated and a charge pulse of electrons can be measured

- Generally used for detection of alpha and beta particles
- Very high resolution energy measurement
- Doesnot depend upon the type of radiation that deposites the energy
- Negligible absorption energy
- o Act as a solid state ionization chamber

Types

- 1) Silicon detectors
- 2) Diamond detectors
- 3) Germanium detectors
- 4) Cadmium telluride and
- 5) cadmium zinc telluride detectors
- 6) AIP Aluminium Phosphide
- 7) AIAs Aluminium Arsenide
- 8) GaP Galium Phosphide
- 9) GaAs Galium Arsenide
- 10)InP Indium Phosphide

advantages

- Minimum energy needed to create an eletron hole pair(3.6eV) for silicon, this leads to better detection resolution.
- Small *charge collection time* (<10)
- Very small recombination losses due to fast charge collection.

QUESTN...

In the ciruit diagram, the direction of eletron moves direction to the current

- a) Same b)opposite
- c) +ve to -ve d) -ve to +ve

Ans: B&C

Thank you

Thank You