

SNS COLLEGE OF TECHNOLOGY

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19ECB201-ANALOG ELECTRONIC CIRCUITS

II YEAR /III SEMESTER

Unit 4- OSCILLATORS & MULTIVIBRATOR CIRCUITS

Topic 1 : Mechanism for start of oscillation and stabilization of amplitude

OSCILLATORS/19EC203-ANALOG ELECTRONIC CIRCUITS/S.V.LAKSHM/ECE/SNSCT

12/12/2022

Classification of oscillators

According to the waveform generated

- Harmonic oscillator lacksquare
- **Relaxation oscillator** \bullet

Classification of oscillator

Oscillator

		· ·	· ·			•				•	•	•		•	
											-		V -	1	
			5	_						/	+-	~			
				R2	2				1		+	\sum	١.		
					_						·	·	{		
•	•		\geq	10	Ň.	, ,			1	•	·	· /	ľ	·	
·		$\cdot <$	<u> </u>	ΤU	JK			•	•	\		/	•		
		· ·										7	1	2	
											\checkmark				
			.												
			Τ.												
		/													
		<u> </u>		•		·		•	·		·	·		·	
	ſ		Q1	•	•	•					•	·	•	·	
	-	· ·		·								·		·	
	K	· ·	2N	17	71) 7) .				•	•	•		
		\sim	Z I	~	-	- 2									
			S .												
			ς.					21							
·			\geq	R/	1	·			•	·	·	·	•	·	
•		\cdot <		-	•			•		·	•	·	•	·	
			>												
		• <		lk	(-	L	ιμ							
			<u> </u>			. \	,								
			<u> </u>												
			Ť.												
		• •	• •	•	•	•	• •	•	•		•	•	•	•	

Block diagram of sinusoidal oscillator

Classification of oscillators

According to frequency generated

- •Audio Frequency Oscillator: Upto 20kHz
- •Radio Frequency Oscillator: 20 kHz to 30 MHz
- •Very High Frequency Oscillator: 30 MHz to 300 MHz
- •Ultra High Frequency Oscillator: 300 MHz to 3 GHz
- •Microwave Frequency Oscillator: Above 3 GHz

Mechanism for Start of Oscillations

Barkhausen Criterion

The essential conditions for maintaining oscillations are:

- 1. $|A\beta| = 1$, i.e. the magnitude of loop gain must be unity.
- 2. The total phase shift around the closed loop is zero or 360 degrees.

Amplitude Stability of Oscillators

10/17

General Form of an Oscillator

Basic Amplifier Amplitude Limiter Positive feedback network

Why Positive Feedback in Oscillators?

Equivalent Circuit

Load Impedance

$$\frac{1}{Z'} = \frac{1}{Z_1} + \frac{1}{h_{ie}}$$

$$Z' = \frac{Z_1 h_{ie}}{Z_1 + h_{ie}}$$

Calculation of Load Impedance

Load Impedance

$$= \frac{h_{ie}(Z_1 + Z_3) + Z_1Z_3 + Z_2(Z_1 + h_{ie})}{Z_2[h_{ie}(Z_1 + Z_3) + Z_1Z_3]}$$
$$= \frac{h_{ie}(Z_1 + Z_2 + Z_3) + Z_1Z_2 + Z_1Z_3}{Z_2[h_{ie}(Z_1 + Z_3) + Z_1Z_3]}$$

$$Z_L = \frac{Z_2[h_{ie}(Z_1 + Z_3) + Z_1 Z_3]}{h_{ie}(Z_1 + Z_2 + Z_3) + Z_1 Z_2 + Z_1 Z_3}$$

Voltage Gain Without Feedback

$$A_{ve} = -\frac{h_{fe} Z_L}{h_{ie}}$$

$$V_0 = -I_1 \left(Z' + Z_3 \right) = -I_1 \left(\frac{Z_1 h_{ie}}{Z_1 + h_{ie}} + Z_3 \right)$$
$$= -I_1 \left(\frac{h_{ie} \left(Z_1 + Z_3 \right) + Z_1 Z_3}{Z_1 + h_{ie}} \right)$$

OSCILLATORS/19EC203-ANALOG ELECTRONIC CIRCUITS/S.V.LAKSHM/ECE/SNSCT

12/12/2022

Feedback Factor

$$\begin{split} \beta &= \frac{V_{fb}}{V_o} = I_1 \left(\frac{Z_1 h_{ie}}{Z_1 + h_{ie}} \right) \left[\frac{Z_1 + h_{ie}}{h_{ie} (Z_1 + Z_3) + Z_1 Z_3} \right] \cdot \frac{1}{I_1} \\ \beta &= \frac{Z_1 h_{ie}}{h_{ie} (Z_1 + Z_3) + Z_1 Z_3} \end{split}$$

Assessment 1 (Answer)

Derive the Equation of oscillator

Hints $A_{ve}\beta = 1$

Answer $h_{ie}(Z_1 + Z_2 + Z_3) + Z_1Z_2(1 + h_{fe}) + Z_1Z_3 = 0$

References

Electronic Devices and Circuits By Salivahanan

Thank You

