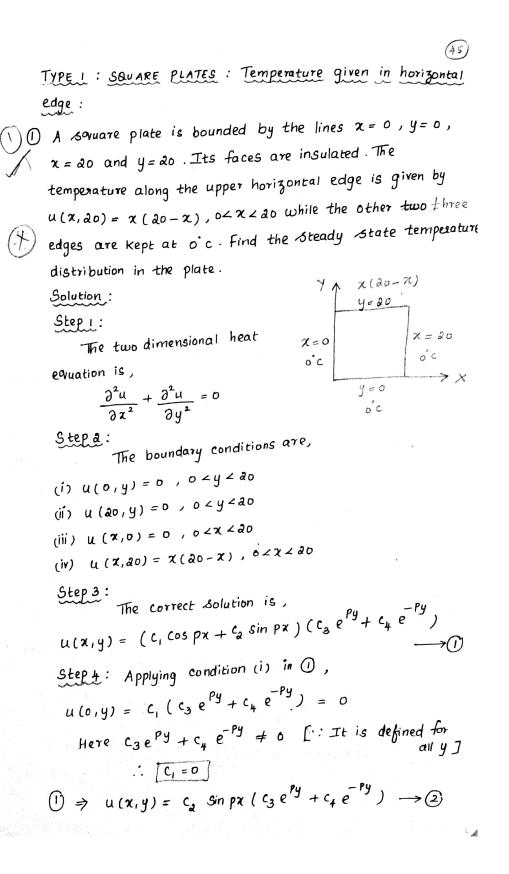


SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

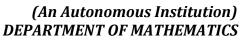
DEPARTMENT OF MATHEMATICS



SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) DEPARTMENT OF MATHEMATICS

Step 5 : Applying condition (ii) in (a), $u(a0,y) = c_{a} \sin a0p (c_{3} e^{Py} + c_{4} e^{-Py}) = 0$ Here $c_3 e^{Py} + c_4 e^{-Py} \neq 0$ [: It is defined for all y] $C_2 \neq 0$ [:: C, = 0 we get a trivial solution] . Sin 20p = 0 $\sin 20 p = \sin n\pi$ 20p= nT $P = \frac{n\pi}{20}$, subs the value of p in (2), $u(x,y) = c_{a} \sin\left(\frac{n\pi x}{ao}\right) \left[c_{3} e^{\frac{n\pi y}{2o}} + c_{4} e^{\frac{n\pi y}{2o}}\right]$ __>(3) Step 6 : Applying condition (iii) in ③, $u(x,0) = C_{a} \sin\left(\frac{n\pi x}{a^{0}}\right) \left(C_{3} + C_{4}\right) = 0$ Here $c_a \neq 0$ [:: $c_1 = 0$ we get a trivial solution] $Sin\left(\frac{n\pi x}{20}\right) \neq 0$ [: It is defined for all z] $c_3 + c_4 = 0$ $c_4 = -c_3$ $(3) \Rightarrow u(x,y) = c_{a} \sin\left(\frac{n\pi x}{a_{0}}\right) \left[c_{3} e^{-c_{3}} e^{-\frac{n\pi y}{20}}\right]$ $= C_{a} C_{3} \operatorname{Sin}\left(\frac{n\pi \chi}{2r}\right) \left[e^{-n\pi y/a_{0}} - e^{-n\pi y/a_{0}} \right]$ = $c_{a}c_{3}$ Sin $\left(\frac{n\pi\chi}{20}\right)$ $\left[a \sinh\left(\frac{n\pi\chi}{20}\right)\right]$ $u(x,y) = C_n \sin\left(\frac{n\pi x}{20}\right) \sinh\left(\frac{n\pi y}{20}\right)$ where $C_n = 2C_1C_3$

SNS COLLEGE OF TECHNOLOGY



Step 7: The most general solution is

$$u(x,y) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{a_0}\right) \sinh\left(\frac{n\pi y}{a_0}\right) \longrightarrow 4$$
Step 8: Applying condition (iv) in 4 .

$$u(x,ao) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{a_0}\right) \sinh(n\pi) = x(2o-x)$$

$$u(x,ao) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{a_0}\right) \sinh(n\pi) = x(2o-x)$$
Step 9: To find c_n :
Expand $f(x) = x(ao-x)$ as a half sange Fousien
Sine series in $(0,ao)$.

$$\therefore f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{a_0}\right) \longrightarrow 4$$
Where $b_n = \frac{a}{a_0} \int_{0}^{20} f(x) \sin\left(\frac{n\pi x}{a_0}\right) dx$
From (5) & (6), $b_n = c_n \sinh(n\pi)$

$$\therefore c_n = \frac{1}{\sinh(n\pi)} \cdot \frac{1}{10} \int_{0}^{20} (20x - x^2) \sin\frac{n\pi x}{20} dx$$

$$= \frac{1}{10 \sinh(n\pi)} \left\{ (20x - x^2) \left[-\frac{\cos n\pi x}{20} \right]_{0}^{20} \right\}$$

$$= \frac{1}{10 \sinh(n\pi)} \left\{ -\frac{2x a_0^3}{n^3 \pi^3} \right\} \left[\cos n\pi - 1 \right]_{0}^{20}$$
Step 10: subs the value of c_n in (4) ,

$$u(x,y) = \sum_{n=1}^{\infty} \frac{800 [1 - (-1)^n]}{n^3 \pi^3} \sinh(n\pi)$$