$$
\operatorname{Re}=\frac{\text { Snerta torce }}{\text { Viscous forc }}
$$

Inema force $=$ Mass \times Acceleration.

$$
\begin{aligned}
& \text { - exvolume a acceleration } \\
& =e \times b^{3} \times 4 t^{2}=e^{2} L^{2} \\
& \text { Vigcoumforce }=\text { shear scress } k \text { prea } \\
& =4\left[\frac{d v}{d y}\right] \times x^{2}=q \nu L \\
& R e=\frac{e L^{2} v^{2}}{y V L}=\frac{e V L}{H}=\frac{v p}{r}\left(\frac{M}{p}-x\right)
\end{aligned}
$$

 diamension pire x = viswity ig the ffluid $v=$ kinematic viswity s the oluid.

Flow Through Downloaded From: wצuEasyEnineeging nat parallel
7) [Aprito] For a town water supply a main pipe live of diamere 4 m is required. As pipes mote Than 0.35 m diameter are not verily available, two parallel piper \& same diameter are used for water supply. HD the total discharge in the parallel pipes is kame an in the single main pipes fund the diameter * Parallel pipe Assume coetorient \& discharge to be the same for all the pipes.

SOL
Fora single pipe system,
The head loss in o 4 m diameter pipes.

$$
\text { hf }=\frac{H f l v^{2}}{2 g D}=\frac{4 f 1 v^{2}}{2 g \times 0.4}
$$

When pipes are connected in parallel,

$$
Q-Q_{1}+Q_{2}
$$

The head loss in parallel pipes.

$$
\begin{aligned}
& (h b)_{p}=h t_{1}=h \phi_{2} \\
& (h \phi)_{p}=\frac{4 f l v_{1}^{2}}{2 g D_{1}}=\frac{4+L_{2} v_{2}^{2}}{2 g D_{2}}=\frac{44 v_{p}^{2}}{2 g D_{p}}
\end{aligned}
$$

Lotal din charge in the parallel pipe is same as the single. main pipe and Therefore, parting? bethe the head Losses un single pope an plies in parallel

$$
\begin{aligned}
& \frac{x^{2} p}{y^{2}}=\frac{p_{p}}{0.4} \\
& U_{a}=g_{A x} \text { continuity prinupl } \\
& \times \times \frac{\pi}{4} \times 100^{2}=2 v_{p} \times \frac{\pi p_{p}}{4} \\
& \frac{V P}{P}=\frac{016}{2 p^{2} p} \\
& \begin{array}{l}
\text { Using } \theta_{p x} \times V^{2}=2 V_{p} \times \frac{\pi P_{p}}{4} \\
v \times \frac{\pi}{4} \times 1040^{2}
\end{array}
\end{aligned}
$$

Using (1) \& (2)

$$
\begin{aligned}
& \frac{Q_{p}^{2}}{V^{2}}=\frac{P p}{0^{4} 4} \frac{016^{2}}{\left(2 P_{0}^{2}\right)^{2}}=\frac{0.025}{4 D^{4}} \\
& D_{p}=\frac{0.0256}{4 D_{p}^{4}} \\
& O 4 \\
& D_{p}=0.30314 \mathrm{~m}
\end{aligned}
$$

8) Eular Equation Dowffaded Mom WworasyEn [inetfand 5]
this 15 equation of motion in thun The forces due to gratuity and pressure are Faken in to Lonsidenalion thin is elerved by considering The motion of fluted element along a etrieam line a consider a stream line in stich How is taking place in s-duction consider a ujludincal element of C / s dA and Length ids , The forces acting on the oglindicicel element are
1. Pressure force pan in the direction or Blow.
2. Pressure force $\left.\left[p+\frac{d p}{\partial D}\right] s\right] d \theta$ oppose to me
3. Weight of element fgdAds

Let θ is the angle ow the direction of tow and the line of action of the weight of element.

The resultant force on the fluid element in the dire clion of s must be equal 10. The mass of fluid element x acceleration in the directions:

$$
\frac{p d A-\left[\frac{P+d P}{d s} d s\right]}{Q g d A d s w t \theta}
$$

$$
=\text { poods } \times a s
$$

where a_{1} is the acoeleration in the divecturn S°

Nowt

If The frow is steady $\frac{\partial v}{\partial t}=0$

$$
a_{s}=\frac{v d v}{2 s}
$$

Substituting The value of a_{s} in equation (6.2) and simplifying. the equation ; we get

$$
\begin{aligned}
& \text { The equip } \frac{\partial s d \theta-e g d n d s \cos \theta}{\partial s}=\text { pd Ads } x \frac{d v}{2 s}
\end{aligned}
$$

Dividing by edsdA, - $\frac{\alpha \rho}{\rho d}-\frac{1}{-\rho d v}$

$$
=\frac{D d v}{2 s}
$$

$$
\frac{2 p}{(o \alpha)}+g \cos \theta+v \frac{\alpha v}{2 s}=\theta
$$

But from, we have $\cos \theta=\frac{d z}{d s}$

$$
\therefore \frac{1}{p} \frac{d p}{d s}+g \frac{d z}{d y}+\frac{v d v}{d s}=0
$$

(or)

$$
\begin{aligned}
& a_{s}=\frac{d v}{d t} \text { fire } v \text { is selim } \& \text { oRE } \\
& =\frac{\partial v}{\partial s} \frac{\alpha s}{d t}+\frac{d v}{\partial t}=\frac{d d v}{d s}+\frac{\alpha v}{d t} \\
& \therefore \frac{d s}{d t}=v
\end{aligned}
$$

Downloaded From : www.EasyEngineering.net

$$
\frac{d \dot{p}}{e}+g d z+d v=0 \quad g=0
$$

(0)?

$$
\frac{d p}{p}+e d z+v d v=0
$$

Equation is know an Euler's equation of motion
Bornoulis equation is obtained by integrating the Euler y equation of motion

$$
\begin{aligned}
& \text { Euler s equation } \\
& \int \frac{d p}{p}+\int g d z+\int v d v=\text { constant }
\end{aligned}
$$

It flow is incompressible if is constant and

$$
\begin{aligned}
& \text { in incompressible } \\
& \frac{p}{Q}+g z+\frac{v^{2}}{2}=\text { constant } \\
& \frac{p}{e g}+z+\frac{v^{2}}{2 g}=\text { constant } \\
& \frac{p}{e g}+\frac{v^{2}}{2 g}+z=\text { wnstant }
\end{aligned}
$$

$$
\operatorname{pg} 264
$$

Bernoulli equation in which
$\frac{p}{e g}=$ pressure energy per unit welsht
of fluid (or) pressure head.
$\frac{V^{2}}{2 g}=$ Kinetic energy perinut weisht (or) kinetic head

I = potenial energy per unit welput

Assumptions
The following
13 The Humid is biden of the How is steady I vescony wo ch?
 10.20 tan
9) Water is flowing through a pie of cm diameter under a pressucio of $q 43$ Nl um (gauge and with mean velocity of $200 \mathrm{~m} \mid \mathrm{s}$ Find thetotice headlors total energy per unit weight ot The. water at $c \mathrm{~s}$, whishis 5 m above the datum line Sol.
Given.

$$
\begin{aligned}
& \text { Oof Pipe }=5 \mathrm{~cm}=0.5 \mathrm{~m} \\
& \text { Pressure }=p=29.43 \mathrm{~N} / \mathrm{m}^{2}-29.4 \times 14 \mathrm{~N} \mathrm{~m}^{2} \\
& \text { velouty } v=2.0 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Velouty } \quad v=3 \mathrm{~m} \\
& \text { Datum head } ~
\end{aligned}
$$

Total head = pressum head F lunitichead t clatum head
Prescure head $=P / \rho g=\frac{29.43 \times 10^{4}}{1000 \times 9.30 m}=1000 \mathrm{~kg}$
Fine 1 hoad $=\frac{r^{2}}{2 g}=\frac{2 \times 2}{2 \times 9.81}=0.204 \mathrm{~m}$
Focal head

$$
\begin{aligned}
& \frac{2 g}{2 \times 9-81} \\
& =\frac{p}{e g}+\frac{v^{2}}{2 g}+z=30+0.204+5 \\
& =35.004 m
\end{aligned}
$$

The water is flowing thowigh a pips having diameter $=0 \mathrm{~cm}$ and 10 cm at Nections 1 and ? respectively the rate of flout through pipe is solis The section 1156 m above datum and sector 2 is 4 m above datum if the pressure at section 11 is 9924 Nim ; fund the intensity of procscove section c

SOL
At section $1 \quad D=20 \mathrm{~cm}=0.2 \mathrm{~m}$

$$
\begin{aligned}
A_{1} & =\frac{\pi}{4}(2)=0 \mathrm{dicm} \\
P_{1} & =39.24 \mathrm{~N} / \mathrm{cm}^{2} \\
& =39.24 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} \\
z_{1} & =6.0 \mathrm{~m}
\end{aligned}
$$

A) section 2 ,

$$
\begin{aligned}
& D_{2}=0.10 \mathrm{~m} \\
& A_{2}=\frac{\pi}{4}(0.1)=0.00485 \mathrm{~m}^{2} \\
& Z_{2}=4 \mathrm{~m}^{2}
\end{aligned}
$$

Rate of flow
Now

$$
\begin{aligned}
& p_{2}=? \\
& Q=35 l i+1 s=\frac{35}{1000}=03 \frac{3 m^{3}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
& Q=A_{1}=A 2 V_{2} \\
& V_{i}=Q / A i=\frac{035}{.0314}=114 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

and

$$
V_{2}=Q_{A 2}=\frac{0314}{0.0785}=4.456 \mathrm{~m} / \mathrm{s}
$$

Applying Bernoulli's equation at sec (1) and (2)

$$
\begin{aligned}
& \frac{p_{1}}{e_{g}}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2} \\
& \frac{39.24 \times 10^{4}}{1000 \times 9.81}+\frac{(114)^{2}}{2 \times 9.8}+6=\frac{P 2}{1000 \times 9.11}+\frac{(4.456)^{2}}{2 \times 9.8}+4 \\
& 4040.063+6=\frac{P_{2}}{9810}+1012+4 \\
& 46.063=\frac{p 2}{9810}+10012+4 \\
& 46.063=\frac{P^{2}}{9810}+5.012 \\
& P_{2}=41.051 \times 910 \mathrm{~N}_{2}^{2} \\
& =40.27 \mathrm{Nlem}^{2} \times 10^{4}
\end{aligned}
$$

Downloaded From : www.EasyEngineering.net
Reynolds number, $\mathrm{Re}=\frac{\rho v \mathrm{p}}{4}$
Density i Water at $85^{\circ} \mathrm{C}, P=997.05 \mathrm{kgln}^{3}$
Viscosity i water at $250,4=0.00089 \mathrm{~N}-\sin ^{2}$

$$
R_{0}=\frac{997.05 \times 306 \times 0.025}{0.00089}=85701.49
$$

Which is greater than 4000 sog the flow ts furbuted
From moody chart $f=0.04$
Total head loss $h L=h L$, bend $h k$ entrance th l bend

We know that

$$
\text { KL entrance }=0.12
$$

$$
\mathrm{kL} \text { bend }=0.3
$$

$$
\begin{aligned}
& \mathrm{kL} \text { bend }=0.3 \\
= & 0.3 \times \frac{3.06^{2}}{2 \times 9.81}+0.12 \times \frac{3.06^{2}}{2 \times 9.81}+0.3\left[\frac{3.00^{2}}{2 \times 94}\right.
\end{aligned}
$$

Total hood loss $h L=0.344 \mathrm{~m}$
pressure drop: $A P=$. $g h=097.05 \times 9.81 \times 0.344=336469.10$
pressure drop.

$$
\begin{aligned}
& \Delta p=p 1-p 2 \\
&=p_{1}-P_{a t m} \\
& 3364.69-p 1-101300
\end{aligned}
$$

Absolute Pressure ar the top

$$
\phi 1=10466469 \mathrm{~Pa}
$$

II) I Pipe of diameter 400 mm Carries water at a Velocity of $25 \mathrm{~m} / \mathrm{s}$. the pressures at the points A and B are given as $29.43 \mathrm{~N} / \mathrm{cm}^{2}$ and $22.563 \mathrm{~N} / \mathrm{cm}^{2}$ respectively stile the datum head at A and B are 28 m and 30 m . Find The loss of head b/w \& \&
SOL [AA M-16]

Dib of pipe

$$
\begin{aligned}
& D=400 \mathrm{~mm}=0.4 \mathrm{~m} \\
& V=25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

At point A.

$$
v=25 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{gathered}
V=25 \mathrm{~m} / \mathrm{s} \\
P A=29.43 \mathrm{~N} / \mathrm{cm}^{2}=29.43
\end{gathered}
$$

$$
Z_{A}=28 \mathrm{~m}
$$

$$
v_{A}=v_{C}=25 \mathrm{~m} / \mathrm{s}
$$

\therefore Total energy at A.

$$
\begin{aligned}
& =\frac{29.48 \times 10^{4}}{1000 \times 9.81}+\frac{25^{2}}{2 \times 9.81}+28 \\
& =30+31.85+28=89.85 \mathrm{~m} \\
& =22.563
\end{aligned}
$$

At point B,

$$
\begin{aligned}
& 1000 \times 9.81 \\
& =30+31.85+28=89.85 \mathrm{~m} \\
& P_{B}=22.563 \mathrm{~N} / \mathrm{cm}^{2}=22.563 \times 10^{4} \mathrm{~N}^{2} \\
& Z_{B}=30 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{B}=30 \mathrm{~m} \\
& V B=V=V A=25 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Total energy ar $B * E_{B}=\frac{P_{B}}{P_{g}}+\frac{V_{B}^{2}}{2 g}+2 B$

$$
=\frac{22.563 \times 10^{4}}{1000 \times 9.81}+\frac{25^{2}}{2 \times 9+30}=84.85 \mathrm{~m}
$$

loss of energy $=E_{A}-E B=89.55-84.85=50 \mathrm{~m}$

12
Practical detail 8.
Practical Applications of Bernowllis Equation

* Incompressible fluid flow

1* Venturimeter
2* Orifice meter

$$
\text { Qact }=C d \times \frac{a_{1} \times a l}{\sqrt{a^{2}-a_{2}^{2}}} \times \sqrt{2 g h}
$$

$\mathrm{Cd}=$ Co-efticient of venturimeter and Hs value is less than 1

In a vertical pipe conveying oil of specific gravity 0.8 poo pressure ganger have been installed at A and B Where the diameters are 16 cm and 8 cm respectively A \& 2 m above B. The pressure gauge readings haw shover that the pressure at B is greater than A by $0.981 \mathrm{~N} / \mathrm{cm}^{2}$. Neglecting all losses, Cal wlate The flow rate. If the ganges at A and B are replaced by tabes filled with the same Liquid and connected to a V - Lube containing mercury, calculate the difference 8 Level of mercury in the two 11 mbs of the \cup-tube.

In b/w the Veusowncrentractal pipe, a lot of eddies are formed as showninfig in These eddies. cause a considerable dissipation 8. energy Most of the everges ix lost dive to These eddie ant dissipation of energes.

Let

$$
A_{c}=c-c, V_{c}=V \text { elocity } \subset-C \cdot A z=22 \text { he= loss of }
$$ head due to sudden contraction

he = Loss up to Vona-Contradion + loss due to sudden enlargement beyond Veva-contracta
Actually losses unto Venue contracta are Vex small and may bo negle ted

$$
h c=\frac{\left(v e-V_{2}\right)^{2}}{2 g}
$$

$\begin{aligned} & \text { sudden enlargement } \\ & \text { sue }\end{aligned}=\frac{\left(X_{i}-v_{2}\right)}{2 g}$
From continucly equation

$$
\begin{aligned}
& \quad A_{C} V_{c}=A_{2} A 2 \\
& \frac{V_{1}}{V_{2}}=\frac{A_{2}}{A C}=\frac{1}{A C_{2}}=\frac{1}{C_{C}} \\
& V C_{C}=\frac{V_{2}}{C_{0}}=\frac{A C}{A_{2}}
\end{aligned}
$$

Sub the 8 value 8 Vi near (1)

$$
\begin{aligned}
& \text { He } 8=\left[\frac{k_{2}}{c}-v_{2}\right]_{2 g}^{2} \\
& =\frac{k_{2}^{2}}{2 g}\left(\frac{1}{c}-1\right]^{2}
\end{aligned}
$$

$$
h_{c}=\frac{k v_{2}^{2}}{2 g}
$$

Where:

$$
k=\left(\frac{1}{4}-1\right)^{2}
$$

The value 8 Cc (Dr) is is not constant, it depends. on the rato (A / Al) Generally; the k value wanes from 0.375 to 0.5

If Ce value eos k Valve is not given, then The head los due to Fruition is taken as

$$
h_{c}=\frac{05 v^{2}}{2 g}
$$

 Whese the presswat as A it: iqu2 Nicin aint outc
 and drous the hyduradie gradien anet lotat enosigy time Tame fo \&oos [AlN-16]

Given data -
Length of plpe $\triangle B C z 200 \mathrm{~m}$
Dischayge

$$
\begin{aligned}
& \Delta B C=200 \mathrm{~m} \\
& 9.20 \mathrm{H}=0.02 \mathrm{~m} / \mathrm{s} \\
& 9.0
\end{aligned}
$$

Slope ot Pipe

$$
t=1 \text { in } 40=1 / 40
$$

Length of Pipe $A B$. 100 m Dia pipe $A B=100 \mathrm{~mm}$
Jensth pf pipe $B C=100 \mathrm{~m}$ Dia 8 pipe $B C=200 \mathrm{~mm}=0.2 \mathrm{mo}$
prevurs at $A \quad P_{A}-1762 \mathrm{~N} / \mathrm{cm}^{2}-1962 \times 10^{4 N} \mathrm{Nm}^{2}$
$C O=$ effocient q frichon $\quad O=$ oDs
velocity \& wakex implpenB, $y_{1}=\frac{Q}{A r e a \eta_{B} A B}=\frac{0.02}{\frac{\pi}{4}(-1)^{2}}=2.54 \|_{s}$

Applying Bernoull's equatisn to point P aud A^{3}

Torat loss from A to C loss duemo tnetion on pipe AB t Loss 8 head dueto entargement at st Loss 8 head due to forlwm In pipe $B C$

Now loss of head duaded fibm wreasengineering.nef pe AB.
losc of head due to fructom on plpe Be.
loss. 8 head due +o entargenint at B.

$$
\begin{aligned}
& 8 \text { head due +o entargemen } \\
& \text { he }=\frac{\left(v i-v_{2}\right)^{2}}{2 g}=\frac{(254-63)}{2 \times 9.81}-0.86 m \\
&
\end{aligned}
$$

- Total Loxs from Aroc = Hothe thyz

$$
\begin{array}{r}
=10.5250186+323711.024 \\
\simeq 150.3 \mathrm{~m}
\end{array}
$$

substituting the valu inci> we get

$$
\begin{aligned}
& \text { Ing } \\
& \qquad \frac{P A}{P g}+\frac{v^{2}}{2 g}+2 A \\
& \frac{P g}{2 g}+\frac{v^{2}}{2 g}+2 c+1103
\end{aligned}
$$

Taking dotom liw porsing fhrough A. wehowi.
$2 n=0$

$$
\begin{aligned}
& 20=\frac{1}{40} \text { x total longth B plpe } \\
& =\frac{1}{40} \times 200=5 \mathrm{~m} \\
& P_{A}=1962 \times 10^{4} N\left(\mathrm{~m}^{2}\right. \\
& V_{A}=V_{1}=2.52 \mathrm{mlsy} v v_{2}=0.63 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Substititing. Thise value 1n lid we gCE

$$
\begin{aligned}
& \frac{1962 \times 104}{1000 \times 9.81}+\frac{(254)^{2}}{2 \times 9.81}+0=\frac{p c}{e g}+\frac{(0.63)^{2}+5}{2 \times 9.6}+11 \% 03 \\
& \text { (or) } 20+0 \cdot 328=\frac{P c}{e g}+0.02+5.0+11.03 \\
& 20 \times 328=\frac{P_{c}}{e g}+1605
\end{aligned}
$$

$$
\begin{aligned}
& f_{0}=4.27 \times 1000-9.81 . \mathrm{NIm}^{2} \\
& =\frac{4+278 \times 1000 \times 9 \cdot 89}{10^{4}} \mathrm{~N} / \mathrm{cm}=4 \sqrt{96} \frac{\mathrm{Nm}}{\mathrm{~cm}}
\end{aligned}
$$

Hydraulic gradient and total Energy line

Pipe As Assuming the datum line parsing through Ap thew total energy at A

$$
\begin{aligned}
& \text { total energy At } A \\
& =\frac{P_{A}}{Q g}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{19.62 \times 10^{4}}{100 \times 7.81}+\frac{(2.54}{2 \times 981}+0 \\
& \quad=20+0.328=20.325 \mathrm{~m}
\end{aligned}
$$

Total energy at B
= Total Energy at A-hst

$$
\begin{aligned}
& =\text { Total energy } \\
& =20.328 \mathrm{i}-10.52=9.808 \mathrm{~m} \\
&)^{2}-0.02
\end{aligned}
$$

Also $\left.\quad k^{2}\right)_{2 g}=\frac{(0.63)^{2}}{2 \times 9.91}=0.02$
Total Energy line

Hydraulic gradient line
LM partlet Fo the lin $D \in$ at a distance I) The downward direction equal to 0.328 m , ito draw. The line PN parcel to the sine UF at a distance 8. $\mathrm{ko}^{2} / 29=0.02$.Joint Point M toN Line IMNP. ono hadvavic gradient inf:

UNIT III - DIMENSIONAL ANALYSIS PART - A

1. What are the methods of dimensional analysis

There are two methods of dimensional analysis.
They are, a. Rayleigh - Retz method
b. Buckingham's theotem method.

Nowadays Buckingham's theorem method is only used.

2. Describe the Rayleigh's method for dimensional analysis.

Rayleigh's method is used for determining the expression for a variable which depends upon maximum three or four variables only. If the number of independent variables becomes more than four, then it is very difficult to find the expression for dependent variable.

3. What do you mean by dimensionless number

Dimensionless numbers are those numbers which are obtained by dividing the inertia force by viscous force or gravity force or pressure force or surface tension or elastic force. As this is a ratio of one force to other force, it will be a dimensionless number.

4. Name the different forces present in fluid flow

Inertia force
Viscous force
Surface tension
force Gravity
force

5. State Buckingham's Π theorem

It states that if there are ' n ' variables in a dimensionally homogeneous equation and if these variables contain ' m ' fundamental dimensions (M, L, T), then they are grouped into ($\mathrm{n}-\mathrm{m}$), dimensionless independent Π-terms.
6. State the limitations of dimensional analysis.

1. Dimensional analysis does not give any due regarding the selection of variables.
2. The complete information is not provided by dimensional analysis. 3.The values of coefficient and the nature of function can be obtained only by experiments or from mathematical analysis.

7. Define Similitude

Similitude is defined as the complete similarity between the model and prototype.

8. State Froude's model law

Only Gravitational force is more predominant force. The law states 'The Froude's number is same for both model and prototype'

9.What are the similarities between model and prototype?

(i) Geometric Similarity
(ii) Kinematicc Similarity
(iii) Dynamic Similarity

UNIT -III

What are the needs of dimemional Analysis 1) Need Hor dimensional analysis $[A / M-13]$ * Fluid flow problems are difficult to solve for obtaining analytical solutions.

* Fluid flow problems like a comb Physical analysis and experimental studies used.
* Experimental studies are use determine the effect of variables associat fid flow phenomenon. It is used to Fu The dependency of the variable with the ot
* Dimensional aualysis is a mathe -1001 (or) technique to study dimensions of problems. In this, each phenomenon is expo an equation having number 8 variables. DIMENSIONS

Engineers and scientists use various Parameters to describe a given phenomenor these physical parameters are inolepen each other called fundamental (or) pr i quastities/parameters.

SL.No Physical quantity symbol Dimensions
1 Fundamental quantities
a) Mass
b) Length
c) Time
2. Geometric quantities
a) Area
b) volume
c) Moment of inertia
3) Kinetic quantities
a) velocity
b) Angular velocity
c) Acceleration
d) Angular acceleration
e) Gravity
b) Discharge
g) Kinematic viscosity
4) Dynamic quantities
a) Force
b) weight
c) Specific weight
d) Density Downloaded From fuww.EasyEngineeritg.net
e) Dynamic viscosity
y $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
f) $w o r k$
g) Energy
h) Power
(1) Torque
(j) Momentum
2) What is Meant by Dimensional Itomogendty ind Dimensional Homogeneity Explain in detail?

The Law of Fourier principle of dimensional homogeneity states "an equation which expresses a physical Phenomenon of third flow should be algebraically correct and dimensionally homogeneal."

Dimensionally homogeneous means, the dimensions if the terms of left hand side should be same as the dimensions of the terms on right hand side.

Example: Consider a How over rectangular weir having discharge

$$
Q=2 / 3 \text { cd } \sqrt{2 g} L H^{32}
$$

$C d=$ coefficient if discharge
$g=$ Grairional force
$L=$ Length of the weir
$H=$ Head of water
Dimensions \& each given parameter

$$
\begin{aligned}
& Q=L^{3} T^{-1} \\
& C d=N 0 \text { dimension } \\
& g=L T^{-2} \\
& L=L \\
& H=L
\end{aligned}
$$

For numerical numpereds-ng: "there no dimensions.
So, the non - dimension equation

$$
\begin{aligned}
L^{3} T^{-1} & =\sqrt{L T^{-2}} \times L \times L^{32} \\
L^{3} T^{-1} & =L^{12+1+32} T^{-1} \\
& =L^{3} T^{-1}
\end{aligned}
$$

As per Fourier principle \& dimensional homegeneity, the left hand side dimensions are equal to the right hand side dimensions. So, the given equation is dimensionally homogeneous.
uses if Dimensional Homogeneity
1* To check the dimensional homogeneity of the given equation

2* To determine the dimension of a physical variable.
3* To convert units from one system to another through dimensional homogeneity.

4* It is a step towards dimensional andysi

Methods of Dimensional Analysis

1) Rayleigh's method
ii) Buckingham π - Theorem

Downloaded From: www FresEngineering net b) The efficiency
3) a) State Back ing ends on density P, dynamic (viscosity y η is a fain dependsear velocity w, diameter D of the find, Express η in of the rotar and parameters terms of dimensimless paratmers

$$
\begin{aligned}
& \eta=f(e, \mu, w, D, Q) \\
& f_{1}(\eta, e, \mu, w, D, Q)=0
\end{aligned}
$$

Hence total number of variables, $n=6$. The value 8 m , number 8 fundamental dimensions for the problem is obtained by writing dimensions 8 each variable. Dimensions $\&$ each variables are $\eta=$ Dimensionless $(\eta, \Delta p)$

$$
\begin{aligned}
& =\operatorname{Dimensionless}(\eta, \Delta p) \\
& e=M L^{-3}, w=T^{-1} \quad Q=L^{3} T^{-1} \\
& d=M L^{-1} T^{-1} D=1 .
\end{aligned}
$$

$$
\begin{aligned}
& d=M L T \\
& \text { Number } \& \pi \text {-terms }=n-m=6-3=3
\end{aligned}
$$

Equation (i) is written as f $\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=0$
Each π-term contains $m+1$ variables, where m is equa to three and is also repeating variable choosing, w, and P as repeating variables, we have

$$
\begin{aligned}
& \pi_{1}=\mathbb{D}^{a_{1}} \cdot w^{b_{1}} \cdot \rho^{c_{1}} \cdot \eta \\
& \pi_{2}=D^{a_{2}} \cdot w^{b_{2}} \rho^{c_{2}} \cdot \mu \\
& \pi_{3}=D^{a_{3}} \cdot w^{b_{3}} \cdot \rho^{c_{3}} \cdot Q
\end{aligned}
$$

Dimensionaless parameters
since the inertia force is always present in a fluid flower, its ratio with Method of selecting Repeating variables.
$(n-m) \rightarrow$ constant - 3
Method of selecting Repeating variables.
number 8 repeating variables = number
of fundamental diamensions

1. Geometric, (2) flow property (3) flied properties. 1. (i) Length (l) ii) d
iii) $\mathrm{H} \rightarrow$ Fundamientite.

Verables with flow property are $\#$ dep endent
(1) Velocity (γ), deceleration)
variables with fluid properly (i) y ii) l iiI) w
3) The repeating variables selected should nor form a dimensionless group
4) The repeating variables together must have the same number 8 fundamental dimensions
5) No two repeating variables should hove the same dimensions.

In most if fluid mechanics problems, The choice - repeating variables may be (i) $d v \rho$ in $l, v e$ (or) III $+, v, \mu$ (or) $d v y$)

First π-term
substituting dimensions on both sides $8 \pi_{1}$,

$$
M^{0} L^{0}=L^{a_{1}} \cdot\left(T^{-1}\right)^{b_{1}} \cdot\left(M L^{-3}\right)^{C_{1}} \cdot M^{0} L^{0} \tau^{0}
$$

Equating the powers \& MCT on both sides
Power \& $\mathrm{ra}, \quad 0=c_{1}$ to $\quad \therefore \quad c_{1}=0$
Power o $\& \quad 0=a_{1}+0 \quad \therefore \quad a_{1}=0$
power \& $T \quad 0=-b_{1}+0, \quad b_{1}=0$
substituting the values of a_{1}, b_{1} and c_{1} in πl we get

$$
\pi_{1}=D^{0} \omega^{0} p^{0} \cdot \eta=\eta
$$

$[$ if a variable is dimensionless, it itself is a π-term. Here the variable n is a dimensionless and hence n is a π-term.

$$
\begin{aligned}
& T_{1}=\eta . \\
& \pi_{2}^{2}=D^{-2} \cdot w^{-1} \cdot P^{-1} \cdot y=\frac{M}{D^{2} \cdots D}
\end{aligned}
$$

second π-term

$$
\pi_{2}=D^{a_{2}} \cdot w^{b_{2}} \cdot p^{1_{2}} \cdot \cdot \cdot
$$

Substiring the dimensions on both sides.

$$
M A^{0} L^{0}=L^{a_{2}} \cdot\left(T^{-1}\right)^{b_{2}} \cdot\left(M C^{-3}\right)^{C_{2}} \cdot M C^{-1} T^{-1}
$$

Equating the power of M, L, T onboth rides
power o $M, \quad 0=\left(2+1 \quad \therefore C_{2}=-1\right.$
Power \& $L, \quad O=a_{2}-3 c z-1 \therefore a_{2}=3 c 2+1=-3+1=-2$
power of $T, \quad 0=-b 2-1, \quad \therefore \quad b_{2}=-1$
substitution the value of a_{2}, b_{2} and c_{2} in π_{2}

$$
\pi_{2}=D^{-2}, w^{-1} \cdot P^{-1} \cdot y=\frac{M}{D^{2} w p}
$$

Third Π-term
cubstiludins the dimensions n boon sides.

$$
M^{D} \cup T^{0}=L^{33} \cdot\left(T^{-1}\right)^{b 3} \cdot\left(M C^{-3}\right)^{c_{3}} \cdot L^{3} T^{-1}
$$

Equating the powers i M, L and T on born side

Power of M ,

$$
\begin{array}{ll}
0=c_{3} & a_{3}=3 c_{3}-3=- \\
0=a_{3}-3 c_{3}+3 & b_{3}=-1 \\
0=-b_{3}-1, & \text { and } c_{3} \text { in } \pi
\end{array}
$$

subcituting the value of $a_{3}, 53$ and c_{3} in π

$$
\pi_{3}=D^{-3} \cdot w^{-1} \cdot P^{0} \cdot Q=\frac{Q}{D^{2} w}
$$

Substitution the values of $\pi_{1}, \pi_{2}, \pi_{3}$ in equal (ii)

$$
\begin{aligned}
& \pm 1\left(\eta=\frac{M}{D^{2} w P}, \frac{Q}{D^{2} w}\right)=O(o r) \\
& \eta=\Phi\left(\frac{\mu}{D^{2} w P}, \frac{Q}{D^{2} w}\right)
\end{aligned}
$$

37) Derive on the basis 8 dimessiond analysis suitable parameters to present the three developed by a propeller. Assume that the thrust P. olepench upon the angular velocity w. speed of advance r, diameter D, dynamic viscosity μ, mass density e, elasticity io the fluid meduer which can be denoted by the speed of sound in the medium C. $[N / D-12]$

SOL
Therese \mathbb{F} is a function $8 w, v, D, M, P, C$

$$
\begin{aligned}
& F=f(w, v, D, \mu, P, c) \\
& f=(p, w, v, D, \mu, e, c)=0
\end{aligned}
$$

Total number of variables, $n=7$
writing dimensions each variable, we have

$$
\begin{aligned}
& P=M L T^{-2}, W=T^{-1}, V=L T^{-1}, D=L, Y=M L^{-1} T^{-1} \\
& l=M L^{-3}, C=L T^{-1}
\end{aligned}
$$

Number of fundamental dimensions, $m=3$
Number of T-terms $=n-m=7-3=4$
Hence, equation (i) can be written as

$$
f_{1}\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)=0
$$

Each T-term contains $m+1=3 H=4$ variables Out of four, threease repeating Variables.

Downloaded From : www.EasyEngineering.net
Choosing D, v, e as repeating variables, we get π-terms as

$$
\begin{aligned}
& \pi_{1}=D^{a_{1}}, v^{b_{1}}, e^{c_{1}}, P \\
& \pi_{2}=D^{a_{2}}, v^{b_{2}}, e^{c_{2}}, w \\
& \pi_{3}=P^{a_{3}}, v^{b_{3}}, e^{c_{3}}, M \\
& \pi_{4}=D^{a_{4}}, v^{b_{4}}, e^{c_{4}}, C
\end{aligned}
$$

First - T-term
writing dimensions on both sides

$$
\begin{aligned}
& \text { ing dimensions on both sides } \\
& M^{O} L T^{0}=L^{a_{1}} \cdot\left(L T^{-1}\right)^{b_{1}} \cdot\left(M L^{-3}\right)^{-2} \cdot M L T^{2}
\end{aligned}
$$

Equating powers $8 \mathrm{M}, L, T$ on both sides
power \& M,
power of 1

$$
\begin{aligned}
& 0=c_{1}+1 \quad \therefore \quad c_{1}=-1 \\
& 0=a_{1}+b_{1}-3 c_{1}+1 \\
& a_{1}=-b_{1}+3 c_{1}-1=2-3-1=-2 \\
& 0=-b_{1}-2 \quad b_{1}=-2
\end{aligned}
$$

power of T
sur the values of a_{1}, b_{1} and c_{1} in π,

$$
\pi_{1}=D^{-2}, v^{2}, e^{-1}: P=\frac{P}{D^{2} v^{2} Q}
$$

Second π-term

$$
\begin{aligned}
& M^{D} L^{*} T^{0}=L^{a_{1}} \cdot\left(L T^{-1}\right)^{b_{1}} \cdot\left(M L^{-3}\right)^{c_{1}}, T^{1} \\
& M=0=c_{2}, \quad c_{2}=0 \quad c_{2}=0 \\
& L=0=a_{2}+b_{2}-3 c_{2} \quad a_{2}=-b_{2}+3 c_{2} H=1 \\
& \pi=0=b_{2}=-1 \\
& \pi 2=P^{\prime} \cdot V^{-1} \cdot P^{0} \cdot \omega=D W / V
\end{aligned}
$$

Third - 1 _term

$$
\begin{aligned}
& c_{3}=-1, a_{3}=-1, b_{3}=-1 \\
& \Pi^{3}=D^{-1} \cdot v^{-1} \cdot e^{-1} \cdot 4=M / D v_{p} \\
& \text { T-term }
\end{aligned}
$$

Fourth T-Eerm

$$
M^{0} L^{0} T^{\prime}=L^{a 4} \cdot\left(L T^{-1}\right)^{b 4} \cdot\left(M C^{-3}\right)^{c 4} \cdot L T^{-1}
$$

$$
c_{4}=0, \quad a_{4}=0, b_{4}=-1
$$

$$
\pi_{4}=D^{0} \cdot v^{-1} \cdot \rho^{0} \cdot C=C / v
$$

$\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}$ in equation ii)

$$
P=D^{2} v^{2} P Q\left(\frac{D w}{v} \frac{\mu}{D v \rho}, c / v\right)
$$

5) Using Buckingham's π-theorem, show that the discharge Q consumed by an oil sing is given by

$$
Q=N d^{3} \phi\left[\frac{4}{\rho N d^{2}}, \frac{\sigma}{\rho N^{2} d^{3}}, \frac{w}{\rho N^{2} d}\right]
$$

Where d is the internal diameter o the ring, N is rotational speed, ρ is densins, μ is viswsity, σ is surface tension and wis the specific weight of oil.

Sol
Given

$$
\begin{aligned}
& Q=f(d, N, P, M, \sigma, w)(o r) \\
& f_{i}(Q, d, N, P, M, \sigma, w)=0
\end{aligned}
$$

Total number of variables, $n=7$
Dimensions of each variables are

$$
\begin{aligned}
& \text { Dimensions of each variables are } \\
& Q=L^{3} T^{-1}, d=L, N=T^{-1}, P=M L^{-3}, M=M L^{-1} T^{-1}, \sigma=M T^{-2} \\
& W=M L^{-2} T^{-2}
\end{aligned}
$$

\therefore Total number \& fundamental diamensi ms mos

$$
\text { number of } \quad=n-m=7-3=4
$$

Equation (i) becomes as for $(\pi, \pi 2, \pi 3, \pi 4)=0$
 are,

$$
\begin{aligned}
& \pi_{1}=d^{a_{1}}, N^{b_{1}}, e^{c_{1}} \cdot Q \\
& \pi_{2}=d^{a_{2}}, N^{b_{2}}, e^{c_{2}} \cdot M \\
& \pi_{3}=d^{a_{3}}, N^{b_{3}} \cdot e^{c_{3}} \cdot \sigma \\
& \pi_{4}=d^{a_{4}}, N^{b_{4}} \cdot e^{c_{4}} \cdot w
\end{aligned}
$$

First π-term
substituting dimensions on both sides

$$
\begin{aligned}
& M^{0} L^{0} T^{0}=L^{a_{1}} \cdot\left(T^{-1}\right)^{b_{1}} \cdot\left(M L^{-3}\right)^{C_{1}} \cdot L^{3} T^{-1} \\
& \text { M } O=C 1 \\
& \therefore \quad c_{1}=0 \\
& \text { L } \quad 0=a_{1}-3 c_{1}+3 \quad \therefore \quad a_{1}=3 c_{1}-3=0-3=-3 \\
& \text { T } \quad 0=-b_{1}-1 \quad \therefore b_{1}=-1
\end{aligned}
$$

substituting a_{1}, b_{1}, c_{1} in $\pi_{1}, \pi_{1}=\bar{d}^{3} \cdot N^{-1} \cdot e^{0} \cdot Q=\frac{Q}{d^{3} N}$
Second π-term $\left[\pi_{2}=d^{a_{2}} \cdot N^{b_{2}} \cdot e^{c_{2}} \cdot M\right]$

$$
\begin{aligned}
& \text { and } \pi \text {-term }\left[\pi_{2}=d^{a_{2}} \cdot N^{b_{2}} \cdot e \cdot M\right] \\
& M_{1}^{0} \cup T^{0}=d^{a_{2}} \cdot\left(T^{-1}\right)^{b_{2}} \cdot\left(M L^{-3}\right)^{c_{2}} \cdot M T^{-1} \\
& c_{2}=-1, a_{2}=-2, b_{2}=-1 \\
& \pi_{2}=d^{-2}, N^{-1} \cdot e^{-1} \cdot M=\frac{M}{2 N P}
\end{aligned}
$$

Third T-Eerm

$$
\begin{aligned}
& \text { Fourth }-\pi \text {-term } \\
& M^{D} D^{D} T^{D}=L^{a 4} \cdot\left(T^{-1}\right)^{b 4} \cdot\left(M T^{-3}\right)^{4 p} \cdot M L^{2} T^{-2} \\
& c_{4}=-1, a_{4}=-1, b_{4}=-2 \\
& \pi_{4}=d^{-1} \cdot N^{-2} \cdot e^{-1} \cdot w=w / d N^{2} \rho \\
& \pm\left(\frac{Q}{d^{3} N}, \frac{M}{\rho N d^{2}}{ }^{\prime} d^{3} N^{2} \rho, \frac{\sigma}{d N^{2} \rho}\right]=0 ; \quad Q=d^{3} N Q\left[\frac{M}{\rho-N d^{2}} .\right.
\end{aligned}
$$

Downloaded From_:www.EasyEngineering.net
b) What in meant by Model \& Analysis 8 Model En detail? model:

It is smaller size size 8 phototype.
Phrotype:
It is original size of the structure.
Model Analysis:-
Studied about the modal Advantages 8 Model testing: -

11 The model test are economical of convent.
2) problems may predicated in advance.
3) Model testing can be used twotect and rectify the elefects if an existing structure Application of the model testing:1* Civil Engineering structures such dams, weirs, canals

2* Desist of harbour, ships cal submarines 3* AeoropLanes, rockets and machines: missiles.
f similitude
similarity b/w model and prototype.
types:-

1. Geometric similarity
2. Kinematic siniclasity
3. Dynamic similarity

Geometric

$$
\begin{aligned}
& \mathrm{Ir} \rightarrow \text { lengm scale ratio } \\
& \mathrm{Ir}^{2} \rightarrow \text { Area } \\
& \mathrm{Ir}^{3} \rightarrow \text { volume }
\end{aligned}
$$

kinematic similarontaged From: www.EasyEngineering.net
True scale ratio, $T_{r}=\frac{T P}{T_{m}}$
Velocity scale ratio, $C r=\frac{L_{r}}{T r}\left(\frac{L_{p} T_{p}}{L_{m} T_{m}}\right)$
Acceleration scale ratio, $d_{r}=\frac{L P T P^{2}}{L m T m^{2}}=\frac{L r}{T r^{2}}$
Discharge scale ratio, $Q r=\frac{L^{3} P / T P}{L^{3} m / T m}=\frac{L r^{3}}{T r}$
Dynamic similarity $=\frac{\left(F_{i}\right) p}{\left(F_{i}\right) m}=\frac{\left(F_{V}\right) p}{(F \vee) m}=\frac{(F g)_{p}}{(F g)_{m}}=F_{r}$
What is meant by similarity laws did Explaining detail?
7) MODEL (or) Similarity laws [AU-MIJ-14]

Dynamic similarity is knoton as model
(or) similanity laws. It means, the models are designed on the basis of force which influences thew. The following are various similarity laws along with its applications:-

1. Reynolds model law
2. Froude model law
3. Euler model law
H. Model Law
4. Mach model Law
5. Reynolds model law
$\left(R_{R}\right)_{\text {model }}=$ (Re) prototype

$$
\frac{\ell_{m} V m L m}{M_{m}}=\frac{P_{p} V_{p} L_{p}}{M_{p}} \text { (1) Re}=\frac{\rho_{V L}}{M}
$$

$\mathrm{Pm}_{\mathrm{m}} \rightarrow$ Density of fluid inmoder
$\mathrm{Vm} \rightarrow$ velocity of third in model
$L \mathrm{Lm} \rightarrow$ Length 8 model
$\mathrm{HM}_{\mathrm{M}} \rightarrow$ viscosity of fluid

Reynolds mocker "orlon'...
1* Motion of air planes
2* Flow of in compressible fluid in closed pipes.
3. Motion 8 submarines and
H * Flow around structures and other bodies immersed fully in moving fluids.
(8) The ratio of length of a submarine and its model is $25: 1$ the speed of sub-marine (prototypal) is $15 \mathrm{~m} / \mathrm{s}$. the model is to be Fested in wind tunnel. Find the sped of air in wind tunnel. Also determir The ratio of the drag (resistance) blu the model and its prototype. Assume the value of kimmatic viscosin for water and air as 0.012 strokes and 0.016 shot respectively. The density for sea water and air is Given an $\left.\begin{array}{l}1030 \\ {[A M-15}\end{array}\right] \mathrm{Kg}^{3}$ and $1.24 \mathrm{Kg} / \mathrm{m}^{3}$ respectively. [AlM-15]
Given data

$$
L_{r}=25
$$

For prototype $v_{p}=15 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\text { Fluid sea water, } v p & =0.012 \text { stokes } \\
= & \quad \therefore .012 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

$$
\ell_{p}=1030 \mathrm{~kg} / \mathrm{m}^{3}
$$

For model, fluid $=$ fir

$$
\begin{aligned}
& \text { oder, fluid }=\text { fir } \\
& V_{m}=0.016 \text { stokes }=0.01 \mathrm{~cm}^{2} / \mathrm{s}=0.016 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s} \\
& Q_{m}=1.24 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Soc According to Reynolds model Law
(Re) Prototype
Remodel $=$ (Re) prototype

$$
\begin{aligned}
& \frac{P_{p} v_{p} D_{p}}{\mu_{p}}=\frac{\varrho_{m} V_{m} D_{m}}{\mu_{m}} \\
& {\left[\therefore R_{e}=\frac{e^{v i}}{4}\right.} \\
& \frac{V_{p} D_{p}}{M_{p} \rho_{p}}=\frac{V_{m} D_{m}}{y_{m} \rho_{m}}, V_{m}=\frac{V_{p} D_{p} V_{m}}{V_{p} D_{m}}=V_{p} \frac{D_{p}}{D_{m}} \frac{x V_{m}}{V_{p}} \\
& =V_{p} \times L_{\gamma} \times \frac{V_{m}}{V_{p}}=15 \times 25 \times \frac{0.016 \times 10^{-4}}{0.012 \times 10^{-4}}=50 \\
& \text { Drag force, } F=m a \\
& \left(\therefore m=\rho t^{3} 20\right. \\
& =\rho L^{3} \frac{r}{T} \\
& =P L^{2} \times L / T \times V \\
& =e e^{2} v^{2} \\
& \therefore\left[\frac{1}{T}=k\right] \\
& \text { Formodel }
\end{aligned}
$$

$$
F_{m}=e_{m} L_{m}^{2} V_{m}^{2}
$$

For prototype $F_{p}=e_{p} L^{2} p \vee p^{2}$
Dividing equation (1) by (2)

$$
\therefore\left(\frac{L_{m}}{L_{p}}=L\right.
$$

$$
\begin{aligned}
\frac{F_{m}}{F_{p}} & =\frac{\rho_{m}}{\rho_{p}} \times\left(\frac{L_{m}}{L_{p}}\right)^{2} \times\left(\frac{V_{m}}{V_{p}}\right)^{2} \\
& =\frac{1.24}{1030} \times\left(\frac{1}{25}\right)^{2} \times\left(\frac{500}{15}\right)^{2} \\
& \left.=3.082 \times 10^{-3}=0.003\right) / \text { Ans }
\end{aligned}
$$

9. Obtain an expression in non-dimensional form for the pressure gradient in a horizontal pipe of circular cross-section. Show how this relates to the familiar expression for frictional head loss.
[N/D-14]
Step 1 . Identify the relevant variables.

$$
\mathrm{d} p / \mathrm{d} x, \rho, V, D, k_{s}, \mu
$$

Step 2. Write down dimensions.

Step 3. Establish the number of independent dimensions and non-dimensional groups.
Number of relevant variables:
$n=6$
Number of independent dimensions:
$m=3$ (M, L and T)
Number of non-dimensional groups (Π s):
$n-m=3$
Step 4. Choose $m(=3)$ dimensionally-independent scaling variables.
e.g. geometric (D), kinematic/time-dependent (V), dynamic/mass-dependent (ρ).

Step 5. Create the Π s by non-dimensionalising the remaining variables: $\mathrm{d} p / \mathrm{d} x, k_{s}$ and μ.

$$
\Pi_{1}=\frac{\mathrm{d} p}{\mathrm{~d} x} D^{a} V^{b} \rho^{c}
$$

Considering the dimensions of both sides:

$$
\begin{aligned}
\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} & =\left(\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right)(\mathrm{L})^{a}\left(\mathrm{LT}^{-1}\right)^{b}\left(\mathrm{ML}^{-3}\right)^{c} \\
& =\mathrm{M}^{1+c} \mathrm{~L}^{-2+a+b-3-} \mathrm{T}^{-2-b}
\end{aligned}
$$

Equate powers of primary dimensions. Since M only appears in [ρ] and T only appears in [V] it is sensible to deal with these first.
$\mathrm{M}: \quad 0=1+c \quad \Rightarrow c=-1$
T: $\quad 0=-2-b \quad \Rightarrow b=-2$
L: $\quad 0=-2+a+b-3 c \quad \Rightarrow \quad a=2-b+3 c=1$
Hence,

$$
\begin{aligned}
& \Pi_{1}=\frac{\mathrm{d} p}{\mathrm{~d} x} D V^{-2} \rho^{-1}=\frac{\mathrm{D} \frac{\mathrm{~d} p}{\mathrm{~d} x}}{\rho V^{2}} \quad \text { (Check: OK - ratio of two pressures) } \\
& \Pi_{2}=\frac{k_{s}}{D} \quad \text { (by inspection, since } k_{s} \text { is a length) }
\end{aligned}
$$

$$
\Pi_{1}=\dot{p} D D^{q} p^{e}
$$

Interms of dimensions:

$$
\begin{aligned}
& \left.\mathrm{M}^{0} \mathrm{I}^{0}=\left(\mathrm{MI}^{-1} \mathrm{~T}^{-b}\right)(\mathrm{I}) \mathrm{LT}^{-1}\right)^{4}\left(\mathrm{ML}^{-}\right)^{e}
\end{aligned}
$$

Equating exponents

$$
\begin{array}{ll}
\text { M } 0=1+c & \Rightarrow c=-1 \\
\text { I } 0=-1-b & \Rightarrow b=-1 \\
\text { I. } 0=-1+a+b-3 c & \Rightarrow a-1-b+3 c=-1
\end{array}
$$

Hence

$$
\Pi_{3}=\frac{\mu}{p I D} \quad \text { Check } O K-\text { this is the reciprocal of the Reynolds number) }
$$

Step 6: Set out the non-dimensional relationship.

$$
H_{1}=f\left(\Pi_{2} \Pi_{1}\right)
$$

or

$$
\begin{equation*}
\frac{D+p^{2}}{d V^{2}}=f\left(\frac{k_{n}}{D} \frac{H}{p I D}\right. \tag{5}
\end{equation*}
$$

Step 7 Rearrange (if required) for convenienice.
We are free to replace any of the Hs by a power of that II: or by aproduct with the other IIs, provided we retain the same number of independent damensioniless groups. In this case we recognise that Π_{3} is the reciptocal of the Reynolds number, so it looks better to uise $\Pi_{s}^{s}=\left(\Pi_{9}\right)^{-1}-$ Re as the third nom-dimensional group We can also winte the pressure gradientinterms of head loss: $\frac{d p}{d x}=\mathrm{pg} \cdot \frac{h}{\mathrm{~L}}$, With these two modifications the non-dimensional relationship (c) then becomes

$$
\frac{g h_{y} D}{L V^{2}}=f\left(\frac{h^{2}}{D} \cdot \mathrm{Re}\right)
$$

or

$$
h_{y}=\frac{L}{D} \times \frac{\dot{q}^{2}}{g} \times f\left(\frac{k_{6}}{D}, R(\mathrm{e})\right.
$$

Since mumerical factors can be absorbed into the non-specified function, this can easily be identified with the Darcy Weisbach equation

$$
h_{r}=\lambda \frac{D V^{2}}{D} \frac{1}{2 g}
$$

where A is a function of relative roughness it D and Reynolds number Re, a function given (Topic 2) by the Colebrook- White equation.
10. Describe briefly the types of forces in moving fluid and the importance of three types of similarity.
[N/D-14]
Forces encountered in flowing fluids include those due to inertia, viscosity, pressure, gravity, surface tension and compressibility. These forces can be written as follows; Inertia force: $m . a=\rho V(d V / d t) \propto \rho V_{2} L_{2}$
Viscous force: $\tau A=\mu A d u / d y \propto \mu V L$
Pressure force: $(\Delta p) A \propto(\Delta p) L_{2}$
Gravity force: $m g \propto g \rho L_{s}$
Surface tension force: σL
Compressibility force: $E_{v} A \propto E_{v} L$
Parameter Mathematical expression Qualitative definition Importance
Prandtl number $\quad P=\frac{\mu c_{p}}{k} \quad \frac{\text { Dissipation }}{\text { Conduction }} \quad$ Heat convection

Eckert number $\quad E_{c}=\frac{V^{2}}{c_{p} T_{0}} \quad \frac{\text { Kinetic energy }}{\text { Enthalpy }} \quad$ Dissipation

Specific heat ratio	$\gamma=\frac{c_{p}}{c_{v}}$	$\frac{\text { Enthalpy }}{\text { Internal energy }}$	Compressible flow
Roughness ratio	$\frac{\varepsilon}{L}$	$\frac{\text { Wall roughness }}{\text { Bodylength }}$	Turbulent rough walls

Temperature ratio $\quad \frac{T_{\infty}}{T_{0}} \quad \frac{\text { Wall temperature }}{\text { Stream temperature }}$ Heat transfer

Pressure coefficient $\quad C_{p}=\frac{p-p_{\infty}}{(\sqrt{2}) \rho V^{2}} \frac{\text { Static pressure }}{\text { Dynamic pressure }}$ Hydrodynamics, Aerodynamics

Lift coefficient

$$
C_{L}=\frac{L}{(1 / 2) A \rho V^{2}}
$$

Lift force
Dynamic force
Hydrodynamics,Aero
dynamics
Drag coefficient $\quad C_{D}=\frac{D}{(12) A \rho V^{2}} \quad \frac{\text { Drag force }}{\text { Dynamic force }} \quad$ Hydrodynamics,
Aero dynamics
11. The tip deflection δ of a cantilever beam is a function of tip load W, beam length I, second moment of area I and Young's modulus E. Perform a dimensional analysis of this problem.[A/M15]

Step 1. Identify the relevant variables.

$$
\delta, W, L, I, E .
$$

Step 2. Write down dimensions.

δ	L
W	MLT^{-2}
l	L
I	$\mathrm{~L}^{4}$
E	$\mathrm{ML}^{-1} \mathrm{~T}^{-2}$

Step 3. Establish the number of independent dimensions and non-dimensional groups.
Number of relevant variables:
Number of independent dimensions:

$$
m=2 \quad\left(\mathrm{~L} \text { and } \mathrm{MT}^{-2}-\text { note }\right)
$$

Number of non-dimensional groups (Π s):

$$
n=5
$$

$$
n-m=3
$$

Step 4. Choose $m(=2)$ dimensionally-independent scaling variables.
e.g. geometric (I), mass- or time-dependent (E).

Step 5. Create the Π s by non-dimensionalising the remaining variables: δ, I and W.
These give (after some algebra, not reproduced here):

$$
\begin{aligned}
& \Pi_{1}=\frac{\delta}{l} \\
& \Pi_{2}=\frac{I}{l^{4}} \\
& \Pi_{3}=\frac{W}{E l^{2}}
\end{aligned}
$$

Step 6. Set out the non-dimensional relationship.

$$
\Pi_{1}=f\left(\Pi_{2}, \Pi_{3}\right)
$$

or

$$
\frac{\delta}{l}=f\left(\frac{I}{l^{4}}, \frac{W}{E l^{2}}\right)
$$

This is as far as dimensional analysis will get us. Detailed theory shows that, for small elastic deflections,

$$
\delta=\frac{1}{3} \frac{W l^{3}}{E I}
$$

or

$$
\frac{\delta}{l}=\frac{1}{3}\left(\frac{W}{E l^{2}}\right) \times\left(\frac{I}{l^{4}}\right)^{-1}
$$

